一维六方压电准晶中圆孔边周期裂纹分析

杨娟1,2, 李星2,周跃亭3

振动与冲击 ›› 2019, Vol. 38 ›› Issue (18) : 62-71.

PDF(2324 KB)
PDF(2324 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (18) : 62-71.
论文

一维六方压电准晶中圆孔边周期裂纹分析

  • 杨娟1,2, 李星2,周跃亭3
作者信息 +

Analysis of periodic cracks emanating from a circular hole in one-dimensional hexagonal piezoelectric quasicrystals

  •  Juan Yang , Xing Li  Yue Ting Zhou
Author information +
文章历史 +

摘要

本文利用复变函数和保角变换的方法,结合柯西积分,针对一维六方压电准晶中圆孔边周期裂纹问题进行了分析研究,导出了电不可导通边界条件和电可导通边界条件下Ⅲ型裂纹问题的场强度因子和能量释放率。在缺失相位子场或电场时,所得结果和已有结果做对比分析,以此验证方法的有效性。通过数值算例讨论了裂纹数、几何参数、耦合参数、声子场应力、相位子场应力和电载荷对材料断裂特性的影响规律,以便在实践中得到更好的应用。本研究为压电准晶元件的优化设计和可靠性分析提供理论基础。

Abstract

By using the complex variable method and the conformal mapping function, combined with the Cauchy integral, the anti-plane problem about a circular hole with periodic cracks in one-dimensional (1D) hexagonal piezoelectric quasicrystals (QCs) was investigated.The field intensity factors and the energy release rates with electrically impermeable and permeable conditions were obtained, respectively.In the absence of phase field or electric field, the obtained results were analysed contrastively with  existing literature results in order to verify the validity of the method.A numerical analysis was then conducted to discuss the influences of the geometric parameters, coupling coefficient, phonon load, phason load and applied electric loads on the fracture characteristics of material.The research provides a theoretical basis for the optimization design and reliability analysis of piezoelectric quasicrystal elements.

关键词

一维六方压电准晶 / 周期裂纹 / 圆孔 / 保角变换 / 场强度因子 / 能量释放率

Key words

1D hexagonal piezoelectric quasicrystals / Periodic Crack / Circular hole / Conformal mapping / The field intensity factors / The energy release rate

引用本文

导出引用
杨娟1,2, 李星2,周跃亭3. 一维六方压电准晶中圆孔边周期裂纹分析[J]. 振动与冲击, 2019, 38(18): 62-71
Juan Yang,Xing Li Yue Ting Zhou . Analysis of periodic cracks emanating from a circular hole in one-dimensional hexagonal piezoelectric quasicrystals[J]. Journal of Vibration and Shock, 2019, 38(18): 62-71

参考文献

[1] Radi E, Mariano P M. Stationary straight cracks in quasicrystals[J]. International Journal of Fracture, 2010, 166: 105–120.
[2] Li L H, Liu G T. Stroh formalism for icosahedral quasicrystal and its application[J]. Physics Letters A, 2012, 376: 987-990.
[3] Li X Y, Wang T, Zheng R F, Kang G Z. Fundamental thereto-electro-elastic solutions for 1D hexagonal QC[J]. Journal of Applied Mathematics and Mechanics, 2015, 95: 457-468.
[4] Yu J,Guo J H,Xing Y M. Complex variable method for an anti-plane elliptical cavity of one-dimensional hexagonal piezoelectric quasicrystals[J]. Chinese Journal of Aeronautics,2015,28(4):1287-1295.
[5]周详.准晶的结构对称性及其物理性质[博士学位论文][C].武汉:武汉大学, 2004.
(Zhou xiang. Structural and Physical Properties of Quasicrystals [Doctoral Dissertation][C].Wu-
han: wuhan university, 2004.)
[6] Altay G, Dökmeci M C. On the fundamental equations of piezoelasticity of quasicrystal media
[J]. International Journal of Solids and Structures, 2012, 49: 3255-3262.
[7]宋天舒,李冬.压电体中孔边III型界面裂纹的动应力强度因子[J].力学学报,2010,42 (6): 1219-1224.
(Song Tianshu, Li Dong. Dynamic stress intensity factor for interfacial cracks  of  mode  III  on a circular cavity in piezoelectric bimaterials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42 (6): 1219-1224.)
[8]赵春香,齐辉,杨在林,王蕾蕾. 半空间内孔边界面裂纹对SH波的动力响应[J]. 振动与冲击,2014, 33(24): 169-172.
(Zhao ChunXiang, Qi Hui,Yang ZaiLin, Wang LeiLei. Dynamic response of interface cracks originating at an hole in a Half-space to SH wave [J]. Journal of Vibration and Shock, 2014, 33(24): 169-172.)
[9]李冬,王慧聪,宋天舒. 压电材料中多个孔边径向裂纹的动力相互作用[J]. 振动与冲击,2016,35(16):176-225.
(Li Dong, Wang Huicong, Song Tianshu. Dynamic behaviors of interacting radial cracks at the edge of the circular cavities in piezoelectric medium[J]. Journal of Vibration and Shock, 2016, 35(16): 176-225. )
[10]杨仁树,左进京,方士正,陈帅志,王煦. 圆孔缺陷对爆生裂纹扩展行为影响的试验研究. 振动与冲击,2018,37(12): 174-178.
(Yang Renshu, Zuo Jinjing, Fang Shizheng, Chen Shuaizhi, Xang Xu. An experimental study on the effect of circular hole defect on crack propagation behavior of blast loading. Journal of Vibration and Shock, 2018, 37(12): 174-178.)
[11] Li X Y, Li P D, Wu T H, Shi M X, Zhu Z W. Three-dimensional fundamental solutions for
one-dimensional hexagonal quasicrystal with piezoelectric effect[J]. Physics Letters A, 2014, 378: 826-834.
[12] Zhang L L, Zhang Y M, Gao Y. General solutions of plane elasticity of one-dimensional ortho-
rhombic quasicrystals with piezoelectric effect[J]. Physics Letters A, 2014, 378: 2768-2776.
[13]周彦斌,刘官厅.一维六方准晶压电材料反平面III型裂纹的电塑性分析[J].固体力学学报,2015, 36(1): 63-68.
(Zhou Yanhin, Liu Guanting. Analysis of the electric yielding zone of the anti-plane mode III crack in piezoelectric materials of one-dimensional hexagonal quasicrystals [J].Chinese Journal of Solid Mechanics, 2015, 36(1): 63-68.)
[14] Yu J, Guo J, Xing Y. Complex variable method for an anti-plane elliptical cavity of one-dimensional hexagonal piezoelectric quasicrystal[J]. Chinese Journal of Aeronautics, 2015, 28: 1287-1295.
[15] Guo J H, Pan E. Three-phase cylinder model of 1D hexagonal piezoelectric quasicrystal composites[J]. Journal of Applied Mechanics, 2016, 83: 081007.
[16] Guo J H, Zhang Z Y, Xing Y M. Antiplane analysis for an elliptical inclusion in 1D hexagonal piezoelectric quasicrystal composites[J]. Philosophical Magazine, 2016, 96: 349-369.
[17] Fan C Y, Li Y, Xu G T, Zhao M H. Fundamental solutions and analysis of three-dimensional cracks in one-dimensional hexagonal piezoelectric quasicrystals[J]. Mechanics Research Commu-
nications, 2016, 74: 39-44.
[18]刘官厅,杨丽英.一维六方准晶压电材料中多缺陷的相互作用[J].固体力学学报,2017, 38(2): 180-188. 
( Liu Guanting, Yang Liying. Interactions among Multi-defects in Piezoelectric Material of
One-dimensional Hexagonal Quasicrystals [J].Chinese Journal of Solid Mechanics,2017, 38(2): 180-188.)
[19] Zhou Y B, Li X F. Two collinear mode-III cracks in one-dimensional hexagonal piezoelectric quasicrystal strip[J]. Engineering Fracture Mechanics, 2018, 18: 133-147.
[20]李星,霍华颂,时朋朋.一维六方压电准晶对称条形体中共线双半无限快速传播裂纹的解析解[J]. 固体力学学报,2014,35(2):135- 141.
( Li Xing, Huo Huasong, Shi Pengpeng. Analytic solutions of two collinear fast propagating
cracks in a symmetrical strip of one-dimensional hexagonal piezoelectric Quasicrystals [J].
Chinese Journal of Solid Mechanics, 2014,35(2):135- 141.)
[21] Yang J, Li X. Analytic solutions of problem about a circular hole with a straight crack in one-dimensional hexagonal quasicrystals with piezoelectric effects[J]. Theoretical and Applied Fracture Mechanics, 2016, 82:17-24.
[22] Yang J , Li X, Ding S H. Anti-plane analysis of a circular hole with three unequal cracks in one-dimensional hexagonal piezoelectric quasicrystals[J]. Chinese Journal of Engineering Mathematics, 2016, 33: 184 -198.
[23]Yang J, Zhou Y T, Ma H L, Ding S H, Li X. The fracture behavior of two asymmetrical limited permeable cracks emanating from an elliptical hole in one-dimensional hexagonal quasicrystals with piezoelectric effect[J]. International Journal of Solids and Structures, 2017, 108: 175-185.
[24]Altay, U., Dökmeci . On the fundamental equations of piezoelectric of quasicrystal media[J]. International Journal of Solids and Structures . 2012,49, 3255–3262.
[25] 路见可.平面弹性复变方法[M] .武汉:武汉大学出版社,2002.
(Lu Jianke.Plane elastic complex variable method[M] .Wuhan: wuhan university press,2002.)
[26] 关璐,陈柱,刘官厅.带k条径向边裂纹的圆形孔口问题的应力分析[J]. 数学的实践与认识, 2011, 41(6): 96-103.
(Guan Lu, Chen Zhu, Liu Guanting. Stress Analysis for a Circular Hole with k Radial Edge Cracks [J]. Methematice in Practice and Theory , 2011, 41(6): 96-103.)
[27] Fan T Y. Mathematical theory of elasticity of quasicrystals and its applications[M]. Bering:science press, Beijing/Springer- Verlag, Heidelberg, 2010.
[28] Guo J H, Lu Z X, Feng X. The fracture behavior of multiple cracks emanating from a circular hole in Piezoelectric materials[J]. Acta Mechanica, 2010, 215: 119-134.
[29] Sih, G C. Stress distribution near internal crack tips for longitudinal shear problems[J]. Journal of Applied Mechanics. 1965, 32: 51

PDF(2324 KB)

Accesses

Citation

Detail

段落导航
相关文章

/