热环境下大范围运动功能梯度薄板的刚-柔耦合动力学特性

王琳杰 1,黎亮 1,章定国1,钱震杰 2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (18) : 79-88.

PDF(1843 KB)
PDF(1843 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (18) : 79-88.
论文

热环境下大范围运动功能梯度薄板的刚-柔耦合动力学特性

  • 王琳杰 1 ,黎亮 1 ,章定国1 ,钱震杰 2
作者信息 +

Rigid-flexible coupling dynamic characteristics of a FGM thin plate undergoing large overall motions in thermal environment

  • WANG Linjie1,LI Liang1,ZHANG Dingguo1,QIAN Zhenjie2
Author information +
文章历史 +

摘要

基于刚柔耦合动力学及热力学理论,运用第二类拉格朗日方程建立了温度场中做大范围运动FGM薄板的一次近似刚柔耦合模型。采用假设模态法对变形场进行离散并在变形能中计入热应变的影响。分析了不同温度环境和不同体积分数指数等因素对温度场中做大范围运动FGM薄板动力学特性的影响。仿真结果表明:随着温度梯度增大FGM薄板振荡现象更加明显,随着体积分数增大FGM薄板振荡幅值与无量纲固有频率增大。

Abstract

Based on the rigid-flexible coupling dynamics and thermodynamics, the dynamic model of a functional gradient material(FGM) thin plate undergoing large overall motions in thermal environment was proposed via employing Lagrange’s equations of the second kind.The deformation was discretized by the assumed mode method, and the effects of thermal strain were included in the elastic potential energy of the plate.The influences of different temperature environments and different volume fraction exponent of the FGM thin plate in the temperature field were analyzed.The simulation results with the presented dynamic equations show that the FGM plate oscillation phenomenon becomes more obvious as the temperature gradient increases.As the volume fraction increases, the amplitude of the oscillation of the FGM plate and the dimensionless natural frequency increase.

关键词

功能梯度板 / 热效应 / 刚-柔耦合 / 动力学建模

Key words

 functional gradient material plates / thermal effect / rigid-flexible coupling / dynamic modeling

引用本文

导出引用
王琳杰 1,黎亮 1,章定国1,钱震杰 2. 热环境下大范围运动功能梯度薄板的刚-柔耦合动力学特性[J]. 振动与冲击, 2019, 38(18): 79-88
WANG Linjie1,LI Liang1,ZHANG Dingguo1,QIAN Zhenjie2. Rigid-flexible coupling dynamic characteristics of a FGM thin plate undergoing large overall motions in thermal environment[J]. Journal of Vibration and Shock, 2019, 38(18): 79-88

参考文献

[1] Yoo H H, Chung J. Dynamics of rectangular plates undergoing prescribed overall motion [J]. Journal of Sound & Vibration, 2001. 239(1):123-137.
[2] Yoo H H, Pierre C. Modal characteristic of a rotating rectangular cantilever plate.[J]. Journal of Sound & Vibration, 2003, 259(1):81-96.
[3]刘锦阳, 洪嘉振. 作大范围运动矩形薄板的建模理论和有限元离散方法[J]. 振动工程学报, 2003, 16(2):175-179.
Liu Jin-yang, Hong Jia-zhen. Dynamic Modeling Theory and Finite Element Method for a Rectangular Plate Undergoing Large Overall Motion [J]. Journal of Vibration Engineering, 2003, 16(2):175-179.
[4] Zhao F Y, Hong J Z, Liu J Y, et al. Dynamic modeling and modal truncation approach for a high-speed rotating thin elastic rectangular plate[J]. Journal of Vibration Engineering, 2006, 19(3):416-421.
[5] 吴胜宝. 作大范围运动柔性梁和柔性薄板刚柔耦合动力学建模与仿真[D]. 南京理工大学, 2009.
Wu Sheng-bao. Rigid-Flexible Coupling Dynamic Modeling and Simulation for flexible beam or plate undergoing large overall motions [D]. Nanjing University of Science and Technology, 2009.
[6] 邹凡, 刘锦阳. 大变形薄板多体系统的动力学建模[J]. 应用力学学报, 2010, 27(4):740-745.
Zou Fan, Liu Jin-yang. Dynamic Formulation for Thin Plate System With Large Deformation [J]. Chinese Journal of Applied Mechanics, 2010, 27(4):740-745.
[7] 吴根勇, 和兴锁. 做大范围运动复合材料板的动力学建模研究[J]. 计算力学学报, 2010, 27(4):667-672.
Wu Gen-yong, He Xing-suo. Dynamic model ing for a composite plate undergoing large overall motion [J]. Chinese Journal of Computational Mechanics, 2010, 27(4):667-672.
[8] Zhao J, Tian Q, Hu H. Modal Analysis of a Rotating Thin Plate via Absolute Nodal Coordinate Formulation[J]. Journal of Computational & Nonlinear Dynamics, 2011, 6(4):041013.
[9] 黎亮. 刚-柔耦合复合结构的动力学建模理论研究[D]. 南京理工大学, 2014.
Li Liang. Research on Dynamic Modeling Theory for Rigid-•Flexible Coupled Composite Structures [D]. Nanjing University of Science and Technology, 2014.
[10] 方建士, 章定国等. 旋转薄板的一种高次动力学模型与频率转向[J]. 力学学报, 2016, 48(1):173-180.
Fang Jian-shi, Zhang Ding-guo. A High-order Rigid-flexible Coupling Model and Frequency Veering of A Rotating Cantilever Thin Plate [J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1):173-180.
[11] Naotake Noda. THERMAL STRESSES IN FUNCTIONALLY GRADED MATERIALS [J]. Journal of Thermal Stresses, 1999, 22(4-5):477-512.
[12] Huang X L, Shen H S. Nonlinear vibration and dynamic response of functionally graded plates in thermal environments. [J]. International Journal of Solids & Structures, 2004, 41(9–10):2403-2427.
[13] 刘锦阳, 袁瑞, 洪嘉振. 考虑热效应的柔性板的刚-柔耦合动力学特性[J]. 上海交通大学学报, 2008, 42(8):1226-1232.
Liu Jin-yang, Yuan Rui, Hong Jia-zhen. The on Rigid-Flexible Coupling Dynamic Performance for a Rectangular Plate Considering Thermal Effect [J]. Journal of Shanghai Jiaotong University, 2008, 42(8):1226-1232
[14] 刘锦阳, 潘科琪. 考虑热效应的复合材料多体系统动力学研究[J]. 动力学与控制学报, 2009, 7(1):9-13.
Liu Jin-yang, Pan Ke-qi. Dynamic investigation on composite flexible multi-body system considering thermal effect [J]. Journal of Dynamics and Control, 2009, 7(1):9-13.
[15] 刘锦阳, 潘科琪. 考虑热效应大变形复合材料薄板的动力学建模[C]// 中国力学大会2011暨钱学森诞辰100周年纪念大会. 2011.
Liu Jin-yang, Pan Ke-qi. Dynamic Modeling for Composite Plate with Large Deformation Considering Thermal Effect [C]// Review of The Chinese Conference on Theoretical and Applied Mechanics 2001 in Memorial of Tsien Hsue-shen's 100th Anniversary. 2011.
[16] 王捷, 刘锦阳. 刚-柔-热耦合多体系统的动力学分析[J]. 应用力学学报, 2012, 29(5):501-507.
Wang Jie, Liu Jin-yang. Rigid-flexible-thermal Coupling Dynamic Analysis of Flexible Multi-body system [J], Chinese Journal of Applied Mechanics 2012, 29(5):501-507.
[17] Alijani F, Bakhtiari-Nejad F, Amabili M. Nonlinear vibrations of FGM rectangular plates in thermal environments [J]. Nonlinear Dynamics, 2011, 66(3):251
[18] Jagtap K R, Lal A, Singh B N. Stochastic nonlinear bending response of functionally graded material plate with random system properties in thermal environment [J]. International Journal of Mechanics & Materials in Design, 2012, 8(2):149-167.
[19] Ghomshei M M, Abbasi V. Thermal buckling analysis of annular FGM plate having variable thickness under thermal load of arbitrary distribution by finite element method[J]. Journal of Mechanical Science & Technology, 2013, 27(4):1031-1039.
[20] 秦洁, 齐丕骞. 热载荷作用下旋转叶片频率转向特性[J]. 中国机械工程, 2014(12): 1595-1599.
Qin Jie, Qi Pi-qian. Frequency Veering Properties for Variable Rotating Blades under Thermal Load [J]. China Mechanical Engineering, 2014(12).
[21] Liu J, Pan K. Rigid-flexible-thermal coupling dynamic formulation for satellite and plate multibody system [J]. Aerospace Science & Technology, 2016, 52:102-114.
[22] 李清禄, 王文涛, 杨静宁. 材料属性温度相关变厚度FGM圆板自由振动DQM求解[J]. 振动与冲击, 2018, 37(10).
Li Qinglu, Wang Wentao, Yang Jingning. Free vibration of FGM variable thickness circular plates with temperature-dependent material properties by the DQM method in thermal environment [J].Journal of Vibration and Shock, 2018, 37(10).
[23] 郝育新, 张伟, HAOYu-xin,等. 四边简支FGM矩形板非线性振动中的内共振[J]. 振动与冲击, 2009, 28(6):153-154.
Hao Yuxin, Zhang Wei. Internal resonance in nonlinear vibration of simply supported FGM plates [J]. Journal of Vibration and Shock, 2009, 28(6):153-154.
[24] Li L, Zhang D G. Free vibration analysis of rotating functionally graded rectangular plates [J]. Composite Structures, 2016, 136:493-504.
[25] 黎亮, 章定国, 郭永彬. 变温度场中刚柔耦合功能梯度梁系统的动力学特性研究[J]. 振动工程学报, 2017, 30(1):9-19.
Li Liang, Zhang Ding-guo, Guo Yong-bin. Dynamics of rigid-flexible coupling FGM beam systems in variable temperature fields [J]. Journal of Vibration Engineering, 2017, 30(1):9-19.
[26] Swaminathan K, Sangeetha D M. Thermal analysis of FGM plates – A critical review of various modeling techniques and solution methods [J]. Composite Structures, 2017, 160:43-60.
[27] 王大龙, 陆佑方, 郭九大. 单连杆柔性机械臂动力学模型分析[J]. 吉林工业大学学报, 1998(2):51-56.
Wang Dalong, Lu Youfang, Guo Jiuda. Model Analysis of a Single-rod Flexible Robotic Manipulator [J]. Journal of Jilin University of Technology, 1998(2):51-56.

PDF(1843 KB)

Accesses

Citation

Detail

段落导航
相关文章

/