考虑温粘热效应的滑动轴承-转子系统动态响应分析

赵道利1,2,马晓栋1,孙维鹏1,万天虎3,罗兴锜1,2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (18) : 95-102.

PDF(1501 KB)
PDF(1501 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (18) : 95-102.
论文

考虑温粘热效应的滑动轴承-转子系统动态响应分析

  • 赵道利1,2,马晓栋1,孙维鹏1,万天虎3,罗兴锜1,2
作者信息 +

Dynamic response analysis of a sliding bearing-rotor system considering thermal effects

  • ZHAO Daoli 1,2, MA Xiaodong 1, SUN Weipeng 1, WAN Tianhu 3, LUO Xingqi 1,2
Author information +
文章历史 +

摘要

针对滑动轴承中润滑油温度的不稳定变化而引起的转子系统振动问题,从油膜润滑的雷诺方程出发,在Gumbel油膜边界条件假设下,推导出短轴承的非线性油膜力的计算公式。将润滑油温度变化时粘度的变化考虑在内,采用四阶Runge-Kutta法求解系统微分方程得到转子-轴承系统运动的时域图、轴心轨迹图、Poincaré图、频谱图、瀑布图和分岔图,分析滑动轴承-转子系统在润滑油温度变化下的动态响应。结果表明,使用不同润滑油时,温粘系数较大的润滑油对转子二阶临界转速附近的拟周期和混沌运动有更好的抑制作用;润滑油温度的升高有利于转子系统在低转速范围运行的稳定性,但在二阶临界转速附近,发生油膜涡动和油膜振荡所对应的转速区域会有所延长,不利于转子-轴承系统的运行。

Abstract

Aiming at the rotor system vibration caused by the unstable temperature change of lubricating oil in sliding bearings, the nonlinear oil film force of a short bearing was derived under the Gumbel boundary assumption.Considering the temperature-driven oil viscosity change, the fourth-order Runge-Kutta method was used to solve the differential equation of the system.The time history, phase portrait, Poincaré diagram, power spectrum, cascade spectra, and bifurcation diagram were obtained to investigate the dynamic responses of the rotor-bearing system.The results show that the oil with high temperature-viscous coefficient has better inhibition effect on the quasi-periodic and chaotic motion near the second-order critical speed of the rotor.The increase of oil temperature is beneficial to the stability of the rotor system under low-speed range, but the rotational speed region corresponding to the phenomenon of oil film whirl and whip will be prolonged in the vicinity of the second-order critical speed.

关键词

滑动轴承-转子系统 / 非线性油膜力 / 短轴承 / 质量偏心距 / 润滑油温度

Key words

sliding bearing-rotor system / nonlinear oil-film force / short bearing / mass eccentricity / oil temperature

引用本文

导出引用
赵道利1,2,马晓栋1,孙维鹏1,万天虎3,罗兴锜1,2. 考虑温粘热效应的滑动轴承-转子系统动态响应分析[J]. 振动与冲击, 2019, 38(18): 95-102
ZHAO Daoli 1,2, MA Xiaodong 1, SUN Weipeng 1, WAN Tianhu 3, LUO Xingqi 1,2. Dynamic response analysis of a sliding bearing-rotor system considering thermal effects[J]. Journal of Vibration and Shock, 2019, 38(18): 95-102

参考文献

[1] 张直明. 滑动轴承的流体动压润滑理论[M]. 北京:高等教育出版社,1987.
ZHANG Zhiming. Hydrodynamic lubrication theory of journal bearing[M]. Beijing: Higher Education Press,1987.
[2] 李建克,杨海成,莫蓉,等. 考虑倾斜的非接触机械密封启动过程瞬态热效应研究[J]. 西北工业大学学报,2012,30(03): 472-477.
LI Jianke,YANG Haicheng,MO Rong,et al. Exploring theoretically transient thermal effects on tilting non-contact mechanical seal[J]. Journal of Northwestern Polytechnical University,2012,30(03): 472-477.
[3] 郭红,刘豪杰,张绍林,等. 动静压轴承油膜温度场特性分析与实验研究[J]. 润滑与密封,2015,40(05): 1-4+30.
GUO Hong,LIU Haojie,ZHANG Shaolin,et al. Performance analysis and experiment research on oil film temperature of hybrid bearing[J]. Lubrication Engineering,2015,40(05): 1-4+30.
[4] 王章波,张红波,何海洋. 带螺旋槽滑动轴承的油膜温度计算[J]. 计测技术,2012,32(04): 17-20+57.
WANG Zhangbo,ZHANG Hongbo,HE Haiyang. Temperature calculation of oil film of sliding bearing with groove[J]. Measuring technique,2012,32(04): 17-20+57.
[5] XU G H,ZhOU J,GENG H P,et al. Fault analysis of journal bearing considering the turbulent and thermo-hydrodynamic effects[J]. Applied Mechanics and Materials,2014,670-671.
[6] LI Y S,Yu M. Thermo hydrodynamic lubrication analysis on equilibrium position and dynamic coefficient of journal bearing[J]. Journal of Nanjing University of Aeronautics & Astronautics,2012,29(03): 227-236.
[7] ARAB S A,Brito F P,Abdolzadeh M,et al. Numerical study of twin groove journal bearing performance under steady-state condition[J]. Lubrication Science,2015,27(02): 83-102.
[8] 童宝宏,桂长林,孙军,等. 滑动轴承启动与变工况时的轴承温度[J]. 合肥工业大学学报(自然科学版),2006,29(10): 1192-1195.
TONG Baohong,GUI Changlin,SUN Jun,et al. Experimental study on the temperature of the journal bearing during start up and the operation process with variation of working conditions[J]. Journal of Hefei University of Technology,2006,29(10): 1192-1195.
[9] 张永芳,刘成,王东,等. 紊流滑动轴承油膜承载力的近似解[J]. 振动与冲击,2014,33(07): 181-186.
ZHANG Yongfang,LIU Cheng,WANG Dong,et al. Approximate solution to load-carrying capacity of a turbulent flow sliding bearing's oil film[J]. Journal of Vibration and Shock,2014,33(07): 181-186.
[10] 于桂昌,刘淑莲,郑水英. 扰动情况下双油槽圆形轴瓦滑动轴承性能分析[J]. 振动与冲击,2012,31(05): 46-49+54.
YU Guichang,LIU Shulian,ZHENG Shuiying. Double oil grooved round sliding bearing performance analysis with disturbance[J]. Journal of Vibration and Shock,2012,31(05): 46-49+54.
[11] 张彦梅,陆启韶,张思进. 一种非稳态油膜力模型下转子系统的碰摩分岔分析[J]. 振动工程学报,2002(01): 72-77.
ZHANG Yanmei,LU Qishao,ZHANG Sijin. Impact bifurcate analysis on a bearing-rotor system with unsteady oil film forces[J]. Journal of Vibration Engineering,2002(01): 72-77.
[12] 刘长利,夏春明,郑建荣,等. 碰摩和油膜耦合故障转子系统周期运动分岔分析[J]. 振动与冲击,2008(05): 85-88+176.
LIU Changli,XIA Chunming,ZHENG Jianrong,et al. On the bifurcation of periodic motion of rotor system with rub-impact and oil fault[J]. Journal of Vibration and Shock,2008(05): 85-88+176.
[13] 陈予恕,孟泉. 非线性转子-轴承系统的分叉[J]. 振动工程学报,1996(03): 56-65.
CHEN Yushu,MENG Quan. Bifurcations of a nonlinear rotor-bearing system[J]. Journal of Vibration Engineering,1996 (3): 56-65.
[14] 张伟忠,焦映厚,陈照波.滑动轴承非线性油膜力模型的对比分析[J]. 汽轮机技术,2011,53(01): 24-26+70.
ZHANG Weizhong,JIAO Yinghou,CHEN Zhaobo. Evaluation of different nonlinear film force models for journal bearing[J]. Turbing Technology,2011,53(01): 24-26+70.
[15] SUN W P,YAN Z M,TAN T,et al. Nonlinear characterization of the rotor-bearing system with the oil-film and unbalance forces considering the effect of the oil-film temperature[J]. Nonlinear Dynamics,2018,92(3): 1119-1145.
[16] MAURICE F,GRANVILE J K,MCKILEY C B,et al. A technical publication devoted to the selection and use of lubricants[J]. Lubrication,1972,64(1): 2-14.
[17] LIN J R. Linear stability analysis of rotor-bearing system: couple stress fluid model[J]. Computers & Structures,2001,79(8): 801-809.
[18] BAB S ,KHADEM S E ,SHAHGHOLI M . Vibration attenuation of a rotor supported by journal bearings with nonlinear suspensions under mass eccentricity force using nonlinear energy sink[J]. Meccanica,2015,50(9): 2441-2460.
[19] DARKO K E. Mathematical modeling of changing of dynamic viscosity,as a function of temperature and pressure,of mineral oils for hydraulic systems[J]. Facta Universitatis Mechanical Engineering,2006,4(1): 27-34.
[20] BAIR S,JARZYNSKI J,WINER W O. The temperature,pressure and time dependence of lubricant viscosity[J]. Tribology International,2001,34(7): 461-468.
[21] 李兴虎,赵晓静.润滑油粘度的影响因素分析[J].润滑油,2009,24(06):59-64.
LI Xinghu,ZHAO Xiaojing. Analysis of factors affecting lubricant viscosity[J]. Lubrication Oil,2009,24(06):59-64.

PDF(1501 KB)

Accesses

Citation

Detail

段落导航
相关文章

/