轨道不平顺不同波长成分对列车运行平稳性、舒适性影响程度不同。为了更有效判别轨道的潜在病害,提出一种基于带通滤波的轨道不平顺敏感波长计权评价指标,即轨道加权质量指数(F-TWQI)。基于车辆-轨道耦合系统动力响应分析确定敏感波长权重曲线,按1/3倍频程对轨道不平顺进行频域划分并设计相应的带通滤波器,对每个频带的轨道不平顺波形分量的标准差赋权,求和得F-TWQI。以轨检车实测高低不平顺数据为例,对比分析TQI、基于EMD的轨道加权质量指数E-TWQI和F-TWQI与UIC513的相关系数。结果表明:三者相关系数分别处于0.6~0.7、0.7~0.75、0.8~0.85,对敏感波长计权更能反映轨道实际状态;F-TWQI能避免E-TWQI端点效应的局限性,计算效率得到极大地提升,为快速、准确分析铁路工务的潜在安全隐患提供了一种新的方法。
Abstract
Different wavelength components of track irregularity have different effects on train running smoothness and comfort. Here, in order to more effectively identify potential diseases of track, a weighted evaluation index for sensitive wavelength of track irregularity based on band pass filtering was proposed, i.e., the track weighted quality index (F-TWQI). The weight curve of sensitive wavelength was determined based on dynamic response analysis of vehicle-track coupled systems. Then track irregularity was divided in frequency domain with 1/3 octave and the corresponding band-pass filters were designed. Standard deviations of track irregularity wave components within each frequency band were weighted and summed to obtain F-TWQI. Taking the data measured with an inspection vehicle for track vertical profile irregularity as an example, three correlation coefficients between TQI and UIC513, E-TWQI obtained based on EMD and UIC513, F-TWQI and UIC513, respectively were compared and analyzed. The results showed that three correlation coefficients are in ranges of 0.60-0.70, 0.70-0.75 and 0.80-0.85, respectively; sensitive wavelengths being weighted can better reflect track actual state; F-TWQI can avoid limitations of E-TWQI’s endpoint effect to greatly improve computational efficiency, and provide a new method for quickly and accurately analyzing hidden dangers of safety in railway engineering.
关键词
轨道不平顺 /
敏感波长 /
带通滤波 /
轨道加权质量指数
{{custom_keyword}} /
Key words
track irregularity /
sensitive wavelength /
band-pass filter /
track weighted quality index
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 罗林. 高速铁路轨道必须具有高平顺性[J]. 中国铁路, 2000,(10):8-11.
Luo Lin. High Smoothness a Must for the High-speed Railway Track [J]. Chinese Railway, 2000 ,(10): 8-11.
[2] 罗林. 轮轨系统轨道平顺状态的控制[M]. 中国铁道出版社, 2006.
LUO Lin. Control of track smooth state of wheel rail system [M]. China Railway Publishing House,2006.
[3] 中华人民共和国铁道部编. 高速铁路有砟轨道线路维修规则(试行)[M]. 中国铁道出版社, 2013.
Ministry of Railways of the People's Republic of China Code for maintenance of high-speed railway with ballast track (Trial) [M]. China Railway Publishing House, 2013.
[4] 练松良, 黄俊飞. 客货共运线路轨道不平顺不利波长的分析研究[J]. 铁道学报, 2004, 26(2):111-115.
LIAN Song-liang, HUANG Jun-fei. Study of the Detrimental Wavelengths of Track Irregularities for Railways with Passenger and Freight Traffic[J]. JOURNAL OF THE CHINA RAILWAY SOCIETY,,2004, 26(2):111-115.
[5] 徐金辉, 王平, 汪力,等. 轨道高低不平顺敏感波长的分布特征及其影响因素的研究[J]. 铁道学报, 2015(7):72-78.
XU Jin-hui, WANG Ping, WANG Li, et al. Research on the Distribution Characteristics and Influence Factors of Sensitive Wavelength of Track Vertical Profile Irregularity [J]. JOURNAL OF THE CHINA RAILWAY SOCIETY,2015(7):72-78.
[6] 徐金辉, 王平, 汪力,等. 基于频域分析方法的轨道高低不平顺敏感波长的研究[J]. 中南大学学报(自然科学版), 2016(2):683-689.
XU Jin-hui, WANG Ping, WANG Li, et al. Sensitive wavelengths of vertical track irregularities by frequency-domain method [J].Journal of Central South University (Science and Technology), 2016 (2): 683-689 .
[7] 李再帏, 雷晓燕, 高亮. 轨道不平顺检测数据的预处理方法分析[J]. 铁道科学与工程学报, 2014(3):43-47.
LI Zai-wei, LEI Xiao-yan,GAO Liang.Analysis of preprocessing methods of track irregularity inspection data[J]. Journal of Railway Science and Engineering, 2014(3):43-47.
[8] 吕宏, 李再帏, 何越磊. 考虑波长因素的轨道不平顺预测研究[J]. 铁道科学与工程学报, 2015(6):1312-1318.
LV Hong, LI Zai-wei, HE Yue-lei. The prediction method considering the factors of track irregularity wavelength [J] .Journal of Railway Science and Engineering, 2015 (6): 1312-1318.
[9] 李再帏, 练松良. 基于本征模函数的轨道质量评价方法[J]. 同济大学学报(自然科学版), 2013, 41(2):213-217.
LI Zai-wei, LIAN Song-liang. Track quality Assessment Method Based on Intrinsic Function [J]. J0URNAL OF TONGJI UNIVERSITY (NATURAL SCIENCE), 2013, 41 (2): 213-217.
[10] 陈爱萍, 胡晓东. 基于MATLAB的IIR数字滤波器的设计[J]. 湖南工程学院学报(自科版), 2004, 14(3):8-10.
CHEN Ai-ping, HU Xiao-dong.Design of IIR digital filter based on MATLAB [J] .Journal of Hunan Institute of Engineering, 2004, 14 (3): 8-10.
[11] 徐金辉. 高速车辆—轨道耦合系统随机振动分析及轨道不平顺评价方法研究[D]. 西南交通大学, 2016.
XU Jin-hui. Study on random vibration anaiysis of high speed vehicle track coupling system and evalution method of track irregularity. Southest Jiaotong University,2016.
[12] 邓伟, 田正文. 利用MATLAB辅助设计IIR数字带通滤波器[J]. 计算机与数字工程, 2009, 37(6):153-155.
DENG Wei, TIAN Zheng-wen. Utilizing MATLAB to Design IIR Digital Bander Pass FILTER [J] .Computer& Digital Engineering, 2009,37 (6): 153-155..
[13] 赵亚梅, 杜红棉, 张志杰. 基于MATLAB一种IIR数字带通滤波器的设计与仿真[J]. 微计算机信息, 2007, 23(5S):285-287.
ZHAO Ya-mei, DU Hong-mian, ZHANG Zhi-jie. The Application of MATLAB in the Design and Simulation of one kind IIR Digital Dandpass Filter [J]. Microcomputer Information, 2007, 23 (5S): 285-287.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}