三角分布的海洋立管涡激振动数值分析

张猛1,刘冉1,赵桂峰1,王军雷2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (19) : 123-130.

PDF(2015 KB)
PDF(2015 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (19) : 123-130.
论文

三角分布的海洋立管涡激振动数值分析

  • 张猛1,刘冉1,赵桂峰1,王军雷2
作者信息 +

Numerical simulation for vortex-induced vibration of marine risers with triangular distribution

  • ZHANG Meng 1   LIU Ran 1  ZHAO Guifeng1  WANG Junlei2
Author information +
文章历史 +

摘要

基于格子Boltzmann粒子网格技术,采用XFlow求解器对三角分布的海洋立管进行涡激振动数值模拟。运用二阶范德波尔方程描述二维圆柱横向单自由度涡激振动,研究了三圆柱间距比及来流约化速度对圆柱涡激振动特性的影响,圆柱间距比取L/D = 0.5、2.0、4.0,来流约化速度为Ur = 1~9。分析了圆柱涡激振动的振幅、升阻力系数特性及圆柱尾流中旋涡脱落模式。结果表明:圆柱间距比为L/D = 0.5、2.0、4.0时对应的上游圆柱涡激振动的锁振区间分别为Ur = 3.5~7、3.5~7.5、3.5~6,最大振幅分别为Yrms/D = 0.372, 0.546, 0.47。间距比过大或过小时,其流体流动模式分别受接近效应和尾流效应的影响,中间间距比时,在非锁振区间内,其流体流动模式受两者组合效应的共同影响,在锁振区间,其流体流动模式同大间距比一样主要受尾流效应的影响。流体干涉效应的变化对圆柱升阻力系数的变化起着重要的作用,不同间距比,圆柱升阻力系数的变化趋势相似。

Abstract

Numerical simulation for vortex-induced vibration (VIV) of marine risers with triangular distribution was performed using XFlow solver based on the lattice Boltzmann particle grid technique. Transverse single-DOF VIV of a 2-D cylinder was described using the second order van der Pol equation, and effects of 3 cylinders’ spacing ratio and incoming flow reduction speed on VIV features of cylinders were studied. The cylinders’ spacing ratio L/D = 0.5, 2.0 and 4.0, and the incoming flow reduction speed Ur = 1-9. VIV amplitude of cylinders, features of lift-drag coefficient and vortex shedding mode in wake of cylinders were analyzed. The results showed that when cylinder spacing ratio L/D = 0.5, 2.0, and 4.0, upstream cylinder VIV’s locking vibration interval Ur = 3.5-7.0, 3.5-7.5 and 3.5-6.0, respectively, the maximum amplitude Yrms/D = 0.372, 0.546 and 0.470, respectively; when cylinder spacing ratio is too big or too small, fluid flow mode is affected by proximity effect and wake effect, respectively; with medium spacing ratio, within a non-locking vibration interval, fluid flow mode is affected by combination of above two effects; within a locking vibration interval, fluid flow mode is mainly affected by wake effect; change of fluid interference effect significantly affects change of cylinder lift-drag coefficient; with different spacing ratios, change trends of cylinder lift-drag coefficient are similar.


关键词

海洋立管 / 涡激振动 / 流固耦合 / 三角分布

Key words

marine riser / vortex-induced vibration / fluid-structure coupling / triangular distribution

引用本文

导出引用
张猛1,刘冉1,赵桂峰1,王军雷2. 三角分布的海洋立管涡激振动数值分析[J]. 振动与冲击, 2019, 38(19): 123-130
ZHANG Meng 1 LIU Ran 1 ZHAO Guifeng1 WANG Junlei2. Numerical simulation for vortex-induced vibration of marine risers with triangular distribution[J]. Journal of Vibration and Shock, 2019, 38(19): 123-130

参考文献

[1] 钟诗民,黄维平,段金龙. 基于CFX的配置浮筒海洋立管涡激振动研究[J]. 船海工程, 2015, 44(2):157-160.
Zhong Shimin, Huang Weiping, Duan Jinlong. Research of Marine Risers with Buoyancy Modules Based on CFX[J]. Ship&Ocean Engineering, 2015, 44(2):157-160.
[2] 黄旭东, 张海, 王雪松. 海洋立管涡激振动的研究现状、热点与展望[J]. 海洋学研究, 2009, 27(4):95-101.
Huang Xudong, Zhang Hai, Wang Xuesong. An overview on the study of vortex-induced vibration of marine riser[J]. Journal of Marine Sciences, 2009, 27(4):95-101.
[3] 及春宁,陈威霖,徐万海. 正方形顺排排列四圆柱流致振动响应研究[J]. 振动与冲击, 2016, 35(11):54-60.
Ji Chunning, Chen Weilin, Xu Wanhai. Flow- induced vibrations of four square-arranged circular cylinders[J]. Journal of Vibraton and Shock. 2016, 35(11): 54-60.
[4] 吴浩. 多根控制杆对细长柔性立管涡激振动抑制作用的实验及数值研究[D]. 大连理工大学, 2013.
Wu Hao. Experimental and numerical studies on the suppression of vortex induced vibration of long flexible riser by multiple control rods[D]. Dalian University of Technology, 2013.
[5] 王军雷、吴金星、丁林等. 完全湍流剪切层对圆柱涡激振动特性的影响[J]. 哈尔滨工业大学学报, 2017, 49(1): 178-183.
Wang Junlei, Wu Jinxing, Ding Lin, et al. Investigation on the cylinder’s vortex- induced vibration under TrSL3[J]. Journal of Harbin Institute of Technology, 2017, 49(1): 178-183.
[6] D. Sumner. Two circular cylinders in cross-flow: A review [J]. Journal of Fluids & Structures, 2010, 26(6): 849-899.
[7] M.M. Zdravkovich. Review of flow interference between two circular cylinders in various arrangements [J]. Journal of Fluids Engineering,1977, 99(4):618-633
[8] T. Igarashi. Characteristics of the Flow around Two Circular Cylinders Arranged in Tandem: 2nd Report, Unique Phenomenon at Small Spacing[J]. Jsme International Journal, 1981, 24(188):323-331.
[9] Y. Tanida. Stability of a circular cylinder oscillating in uniform flow or in a wake [J]. Journal of Fluid Mechanics, 1973, 61(4):769-784.
[10] 黄钰期, 邓 见, 任安禄. 黏性非定常圆柱绕流的升阻力研究[J]. 浙江大学学报, 2003, 37(5): 596-601.
Huang Yuqi, Deng Jian, Ren Anlu. Research on lift and drag in unsteady viscous flow around circular cylinders[J]. Journal of Zhejiang University, 2003, 37(5):596-601.
[11] Y. Bao, D. Zhou, C. Huang. Numerical simulation of flow over three circular cylinders in equilateral arrangements at low Reynolds number by a second-order characteristic- based split finite element method [J]. Computers & Fluids , 2010, 39(5):882-899.
[12] 张敏,谢玉林,雷林等. 基于XFlow的涡激振动压电能量收集数值研究[J]. 重庆交通大学学报(自然科学版). 2017, 36(1):103-109 Zhang Min, Xie yulin, Lei Lin, et al. Numerical Research of Piezoelectric Energy Harvesting from VIV Based on XFlow [J].
Journal of Chongqing Jiaotong University (Natural Sciences). 2017, 36(1):103-109.
[13] 段金龙. 配置浮筒的海洋深水立管涡激振动的研究[D]. 中国海洋大学,2013.
Duan Jinlong. Research on Vortex-induced Vibration of Marine Risers with Buoyancy Modules [D]. Ocean university of china. 2013.
[14] B. S. Carmo, S. J. Sherwin, P. W. Bearman, et al. Flow-induced vibration of a circular cylinder subjected to wake interference at low Reynolds number[J]. Journal of Fluids & Structures, 2011, 27 (4) :503-522
[15] L Lee , D Allen. Vibration frequency and lock-in bandwidth of tensioned, flexible cylinders experiencing vortex shedding[J]. Journal of Fluids & Structures, 2010 , 26 (4) :602-610.
[16] 郝鹏, 李国栋,杨兰等. 圆柱绕流流场结构的大涡模拟研究[J]. 应用力学学报,2012, 29 (4):23-31.
Hao Peng, Li Guodong,Yang Lan, et al. Large eddy simulation of the circular cylinder flow in different regimes[J]. Chinese Journal of Applied Mechanics, 2012, 29 (4):23-31.
[17] C. Liu, X. Zheng, and C.H. Sung. Preconditioned multi-grid methods for unsteady incompressible flow [J]. Journal of Computational Physics, 1998, 139(1):35-57.
[18] H. Zhang, U. Fey, B. R. Noack, et al. On the transition of the cylinder wake [J]. Physics of Fluids, 1995, 7(5): 779-794. 
[19] H. Schliching, k. Gersten. Boundary-layer Theory[J]. Mcgraw-hill, 1979, 20(00):48-89.
[20] 詹 昊, 李万平, 方秦汉等. 不同雷诺数下圆柱绕流仿真计算[J]. 武汉理工大学学报. 2008, 30(12):129-132.
Zhan Hao, Li Wanping, Fang Qinhan, et al. Numerical Simulation of the Flow Around a Circular Cylinder at Varies Reynolds Number [J].Journal of Wuhan University of Technology, 2008, 30(12):129-132.
[21] Su Mingde, Kang Qinjun. Large eddy simulation of the turbulent flow around a circular cylinder at sub-critical Reynolds numbers[J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(1):100-105.
[22] P. Catalano, M. Wang, G Laccarino, et al. Numerical simulation of the flow around a circular cylinder at high Reynold numbers[J]. International Journal of Heat & Fluid Flow, 2003, 24(4):463-469.
[23] R Gopalkrishnan. Vortex-induced forces on oscillating bluff cylinders[D]. Massachusetts Institute of Technology,1993
[24] S.Dong,G. E. Kamiadakis.DNS of flow past a stationary and oscillating cylinder at Re=10000 math Container Loading Mathjax [J]. Journal of Fluids & Structures,2005, 20(4):519-531.
[25] Z. Gu, T. Sun. Classification of flow pattern on three circular cylinders in equilateral- triangular arrangements[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89(6):553-568.
[26] N. Yang, X. K. Zheng, J. Zhang, et al. Experimental and numerical studies on aerodynamic loads on an overhead bridge due to passage of high-speed train [J]. Journal of Wind Engineering & Industrial Aerodynamics, 2015, 140: 19-33.
[27] 王媛. 海洋立管涡激振动抑振装置的数值模拟研究[D]. 中国海洋大学, 2013.
Wang Yuan. Numerical Study on Vortex- Induced Vibration Suppression Devices of Marine Rise by CFX[D]. Ocean Universtty of China, 2013.

PDF(2015 KB)

Accesses

Citation

Detail

段落导航
相关文章

/