基于电涡流-调谐质量阻尼器的海上风电筒型基础结构减振研究

练继建1,2,赵 悦1,2,练 冲1,2,董霄峰1,2,王海军1,2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (19) : 20-25.

PDF(1538 KB)
PDF(1538 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (19) : 20-25.
论文

基于电涡流-调谐质量阻尼器的海上风电筒型基础结构减振研究

  • 练继建1,2,赵 悦1,2,练 冲1,2,董霄峰1,2,王海军1,2
作者信息 +

Vibration reduction of offshore wind turbine tube infrastructures based on EC-TMD

  • LIAN Jijian1,2, ZHAO Yue1,2, LIAN Chong1,2, DONG Xiaofeng1,2, WANG Haijun1,2
Author information +
文章历史 +

摘要

针对海上风电结构在极端风荷载作用下会发生不利于工程安全的大幅振动问题,从理论推导与工程应用两个方面研究了基于新型电涡流-调谐质量阻尼器(Eddy Current-Tuned Mass Damper, EC-TMD)在海上风电筒型基础结构应用的可行性。首先,基于电涡流阻尼器(ECD)减振机理,将新型水平和摆式EC-TMD中的电涡流阻尼采用数值模拟中常规阻尼器等效替代。随后,利用Warburton公式对EC-TMD结构阻尼比和频率比进行优化。最后,将EC-TMD应用于江苏响水海上风电复合筒型基础结构实际工程模拟中。结果表明:极端风荷载工况下,EC-TMD可有效降低塔筒顶部振动位移幅度达21%至33%,说明其对海上风电筒型基础结构减振具有一定的工程应用价值。

Abstract

Aiming at large amplitude vibration problems of offshore wind turbine structures under extreme wind loads being not conducive to safety, the feasibility of applying eddy current-tuned mass damper (EC-TMD) to reduce vibration of an offshore wind turbine tube infrastructure was studied in two ways of theoretical derivation and engineering application. Firstly, eddy current damping of horizontal and pendulum type EC-TMDs was equivalently substituted with conventional damper in numerical simulation based on the vibration reduction principle of eddy current damper (ECD). Secondly, structural damping ratio and frequency ratio of EC-TMD were optimized with Warburton formula. Finally, EC-TMD was used in the actual engineering simulation for a certain offshore wind turbine tube infrastructure located at Xiangshui of Jiangsu province. Results showed that under extreme wind loads condition, EC-TMD can be used to reduce 21%-33% vibration displacement amplitude at the tower tube top; EC-TMD is very valuable for vibration reduction of offshore wind turbine structures.

关键词

电涡流-调谐质量阻尼器(EC-TMD) / 减振 / 海上风电结构 / 原型观测 / 数值模拟

Key words

 eddy current-tuned mass damper (EC-TMD) / vibration reduction / offshore wind turbine structure / prototype observation / numerical simulation

引用本文

导出引用
练继建1,2,赵 悦1,2,练 冲1,2,董霄峰1,2,王海军1,2. 基于电涡流-调谐质量阻尼器的海上风电筒型基础结构减振研究[J]. 振动与冲击, 2019, 38(19): 20-25
LIAN Jijian1,2, ZHAO Yue1,2, LIAN Chong1,2, DONG Xiaofeng1,2, WANG Haijun1,2. Vibration reduction of offshore wind turbine tube infrastructures based on EC-TMD[J]. Journal of Vibration and Shock, 2019, 38(19): 20-25

参考文献

[1] Wang X, Zeng X, Li J, et al. A review on recent advancements of substructures for offshore wind turbines[J]. Energy Conversion and Management, 2018, 158: 103-119.
[2] Ahmed N A, Cameron M. The challenges and possible solutions of horizontal axis wind turbines as a clean energy solution for the future[J]. Renewable and Sustainable Energy Reviews, 2014, 38: 439-460.
[3] Rahman M, Ong Z C, Chong W T, et al. Performance enhancement of wind turbine systems with vibration control: A review[J]. Renewable and Sustainable Energy Reviews, 2015, 51: 43-54.
[4] Wang Z, Chen Z, Wang J. Feasibility study of a large-scale tuned mass damper with eddy current damping mechanism[J]. Earthquake Engineering and Engineering Vibration, 2012, 11(3): 391-401.
[5] Amjadian M, Agrawal A K. Modeling, design, and testing of a proof-of-concept prototype damper with friction and eddy current damping effects[J]. Journal of Sound and Vibration, 2018, 413: 225-249.
[6] 祝长生. 时变磁场下径向电涡流阻尼器的动力特性[J].机械工程学报,2009,45(8):31-36.
ZHU Chang-sheng. Dynamic performance of a radial eddy current damper under variable-time magnetic field[J]. Journal of mechanical engineering, 2009, 45(8): 31-36 .
[7] 肖登红,潘强,何田. 一种新型电涡流阻尼器及阻尼性能研究[J].噪声与振动控制,2014,34(6):197-201.
XIAO Deng-hong, PAN QIANG, HE TIAN. Design and Analysis of a Novel Eddy Current Damper[J]. Noise and vibration control, 2014, 34(6): 197-201.
[8] 陈政清,黄智文. 一种板式电涡流阻尼器的有限元模拟及试验分析[J].合肥工业大学学报(自然科学版),2016(04):499-502.
CHEN Zhen-gqing, HUANG Zhi-wen. Finite element simulation and experimental test of a plane-type eddy current damper[J]. Journal of Hefei University of Technology (Natural Science), 2016(04): 499-502.
[9] 陈政清,张弘毅,黄智文. 板式电涡流阻尼器有限元仿真与参数优化[J]. 振动与冲击,2016,35(18):123-127.
CHEN Zheng-qing, ZHANG Hong-yi, HUANG Zhi-wen. FEM simulation and parameter optimization of a planar eddy current damper[J]. Journal of vibration and shock, 2016, 35(18):123-127.
[10] 汪志昊,陈政清. 永磁式电涡流调谐质量阻尼器的研制与性能试验[J]. 振动工程学报,2013, 26(3):374-379.
WANG Zhi-hao, CHEN Zheng-qing. Development and performance tests of an eddy-current tuned mass damper with permanent magnets[J]. Journal of vibration engineering. 2013, 26(3):374-379.
[11] 汪志昊. 自供电磁流变阻尼器减振系统与永磁式电涡流 TMD 的研制及应用[D]. 长沙:湖南大学土木工程学院,2011.
WANG Zhi-hao. Developments and applications of the self-powered magnetorheological damper and TMDs using eddy current damping[D]. Changsha: School of Civil Engineering, Huanan University, 2011.
[12] 张琪,吕西林. 附加电涡流阻尼TMD的高层建筑结构振动台试验研究[J]. 结构工程师,2017, 33(2):1-9.
ZHANG QI, LN Xi-lin. Shaking table test on tall building using eddy-current TMD[J]. Structural engineers, 2017, 33(2):1-9.
[13] 陈政清,黄智文,田静莹. 电涡流调谐质量阻尼器在钢-混凝土组合楼盖振动控制中的应用研究[J]. 建筑结构学报,2015,36:94-99.
CHEN Zheng-qing, HUAN Zhi-wen, TIAN Jing-ying. Feasibility study of eddy current tuned mass damper in vibration control of steel-concrete composite floor structures[J]. Journal of building structures, 2015,36:94-99.
[14] 雷旭,牛华伟,陈政清,等. 大跨度钢拱桥吊杆减振的新型电涡流TMD开发与应用[J]. 中国公路学报,2015,28(4):60-68.
LEI XU, NIU Hua-wei, CHEN Zheng-qing, et al. Development and Application of a New-type Eddy Current TMD for Vibration Control of Hangers of Long-span Steel Arch Bridges[J]. China Journal of Highway and Transport, 2015, 28(4): 60-68.
[15] Lu X, Zhang Q, Weng D, et al. Improving performance of a super tall building using a new eddy-current tuned mass damper[J]. Structural Control and Health Monitoring, 2017, 24(3).
[16] 柳国环,李宏男,国巍. TLD-结构体系转化为 TMD-结构体系的减振计算方法[J]. 工程力学,2011,28(5):31-34.
LIU Guo-huan, LI Hong-nan, GUO WEI. An equivalent calculation method for analysis of structural vibration control of transforming TLD-structure to TMD-structure system[J], Engineering mechanics, 2011,28(5):31-34,40 .
[17] Lian J, Ding H, Zhang P, et al. Design of large-scale prestressing bucket foundation for offshore wind turbines[J]. Transactions of Tianjin University, 2012, 18(2): 79-84.
[18] 李德源,严小辉,莫文威,等. 基于脉冲激励响应的风力机叶片结构阻尼计算[J]. 沈阳工业大学学报,2014,36(6):619-624.
LI De-yuan, YAN Xiao-hui, MO Wen-wei, et al. Structural damping calculation of wind turbine blade based on pulse excitation response[J]. Journal of Shenyang University of Technology, 2014,36(6),619-624.
[19] Simulia D S. Abaqus 6.11 theory manual[J]. Providence, RI, USA: DS SIMULIA Corp, 2011.
[20] 李秀强,蒋通,岳建勇,等. 无限元边界在地铁引发环境振动分析中的应用[J]. 地下空间与工程学报, 2011, 1, 1377-1383.
LI Xiu-qiang, JIANG TONG, YUE Jian-yong, et al. Applicatoin of infinite element boundary in the analysis of subway-induced environment vibration[J]. Chinese Journal of Underground Space and Engineering, 2011, 1377-1383.
[21] Warburton G B. Optimal absorber parameters for various combinations of response and excitation parameters[J]. Earthquake Engineering and Structural Dynamic, 1982, 10(3): 381-401.
[22] International Electrotechnical Commission. IEC 61400-1: Wind turbines part 1: Design requirements[S]. International Electrotechnical Commission, 2005.
[23] Colwell S, Basu B. Tuned liquid column dampers in offshore wind turbines for structural control[J]. Engineering Structures, 2009, 31(2): 358-368.

PDF(1538 KB)

Accesses

Citation

Detail

段落导航
相关文章

/