基于半互功率谱密度及响应面法的干气密封系统工作模态分析

刘 蕴1,刘全兴2,殷 鸣3,殷国富1、3

振动与冲击 ›› 2019, Vol. 38 ›› Issue (19) : 208-217.

PDF(1805 KB)
PDF(1805 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (19) : 208-217.
论文

基于半互功率谱密度及响应面法的干气密封系统工作模态分析

  • 刘 蕴1,刘全兴2,殷 鸣3,殷国富1、3
作者信息 +

Operational modal analysis of dry gas sealing system based on semi-cross power spectral density and response surface method

  • LIU Yun 1  LIU Quanxing 2  YIN Ming 3  YIN Guofu 1、3
Author information +
文章历史 +

摘要

干气密封装置的动态特性会直接影响密封的可靠性,本文针对具有复杂结构的干气密封装置,实现对其工作模态的研究。基于多参考点最小二乘复频域法(PolyLSCF),分别采用互功率谱函数(Cross Power Spectra)和半互功率谱密度函数(Cross Half PSD)实现对装置系统的工况模态分析及识别,并通过数学指标:模态置信度(MAC)、平均相位偏差(MPD)、模态相位线性度(MPC)、模态复杂性(MOV)以及模态指示函数(MIF)对两个函数的模态结果进行验证,结果表明:采用半互功率谱密度函数的模态分析结果好于互功率谱函数,半互功率谱密度函数更适用于此类复杂结构系统的工作模态分析;不同操作条件下的模态结果表明:转速对于系统模态的影响大于介质压力。同时,本文建立了一种基于响应面方法的时变模态参数识别模型,以不同的操作条件(介质压力与转速)、方向和模态阶数为响应面变量,通过Box-Behnken试验设计选取合适的变量样本点,建立系统模态参数的完整二次多项式工作模态响应面模型并验证了其有效性,为实现时变模态的辨识提供了新的方法和技术支持。
 

Abstract

Dynamic characteristics of a dry gas seal device directly affect its seal reliability. Here, operational modes of a dry gas seal device with complex structure were studied. Based on the poly-reference least-squares complex frequency domain (PolyLSCFD) method, the operational modal analysis and identification of this system was performed using the cross power spectrum(CPS) andthe half-cross power spectral density (Half-CPSD). The modal analysis results were verified using mathematical indexes including the modal assurance criterion (MAC), the mode phase deviation (MPD), the mode phase collineation (MPC), the mode complexity (MOV) and themode indication function (MIF). The results showed that the modal analysis results with Half-CPSD are better than those with CPS, Half-CPSD is more suitable for the operational modal analysis of this type system; effects of rotating speed on the system’s modes are larger than those of medium pressure. At the same time, a model for time-varying modal parametric identification was established based on the response surface method. Taking operating conditions including medium pressure, rotating speed, rotating speed direction and modal order as response surface variables, appropriate variable sample points were selected using Box-Behnken test design. The complete quadratic polynomial operational modal response surface model for the system’s modal parameters was built and its effectiveness was verified. The results provided a new method and technical support for time-varying modal identification.

关键词

互功率谱函数
/ 半互功率谱密度函数 / 数学指标 / 模态验证 / 响应面模型 / 时变模态

Key words

 Cross Power Spectra function / Cross Half PSD function / mathematical indicators / modals verification / response surface model / time-varying modal

引用本文

导出引用
刘 蕴1,刘全兴2,殷 鸣3,殷国富1、3. 基于半互功率谱密度及响应面法的干气密封系统工作模态分析[J]. 振动与冲击, 2019, 38(19): 208-217
LIU Yun 1 LIU Quanxing 2 YIN Ming 3 YIN Guofu 1、3. Operational modal analysis of dry gas sealing system based on semi-cross power spectral density and response surface method[J]. Journal of Vibration and Shock, 2019, 38(19): 208-217

参考文献

[1] 续秀忠, 华宏星. 基于环境激励的模态参数辨识方法综述[J]. 振动与冲击, 2002, 21(3): 1-5.
XIU Xu-zhong, HUA Hong-xing. Review of modal identification methods based on the ambient excitation [J]. Journal of Vibration and Shock, 2002, 21(3): 1-5.
[2] 龚凌诸, 杨晓翔, 钟舜聪, 等. 基于环境激励的港口起重机工作模态分析 [J]. 机电工程, 2011, 28(4): 422-427.
GONG Ling-zhu, YANG Xiao-xiang, ZHONG Shun-cong, et al. Operational modal analysis of harbor crane under ambient exciation [J]. Journal of Mechanical and Electrical Engineering, 2011, 28(4): 422-427.
[3] Reynders E. System identification methods for (operational) modal analysis: review and comparison [J]. Archives of Computational Methods in Engineering, 2012, 19(1): 51-124.
[4] 吕中亮, 杨昌棋, 安培文, 等. 多点激励模态参数识别方法研究进展 [J]. 振动与冲击, 2011, 30(1): 197-203.
LU Zhong-liang, YANG Chang-qi, AN Pei-wen, et al. Progress on modal parameter identification with multiple-excitation [J]. Journal of Vibration and Shock, 2011, 30(1): 197-203.
[5] Bonato P, Ceravolo R, De Stefano A, et al. Use of cross-time-frequency estimators for structural identification in non-stationary conditions and under unknown excitation [J]. Sound and vibration, 2000, 237(5):775-791.
[6] 申凡, 郑敏, 鲍明. 用互功率谱进行未知激励下的模态振型识别[J] .南京理工大学学报, 2000, 24(2):117 -120.
SHEN Fan, ZHENG Min and BAO Ming. Identification of mode shape by fitting Cross-Power spectra under unknown excitation [J]. Journal of Nanjing University of Science and Technology, 2000, 24(2):117 -120.
[7] 申凡, 郑敏,  史东峰, 等.一种基于互功率谱密度的频域模态识别法[J] .振动工程学报, 2001, 14(3):259-264.
SHEN Fan, ZHENG Min, SHI Dong-feng, et al. Modal parameter identification using Cross-Power spectra density [J]. Journal of Vibration Engineering, 2001, 14(3):259-264.
[8] 郑敏, 申凡, 史东锋, 等. 采用工作模态识别法进行模态分析[J] .中国航空学报, 2004, 17(4):215-219.
ZHENG Min, SHEN Fan, SHI Dong-feng, et al. Modal analysis using operating modal identification method [J]. Chinese Journal of Aeronautics, 2004, 17(4):215-219.
[9] 楼江雷, 唐进元, 陈思雨, 等. 基于LMS工作模态测试的齿轮箱性能分析[J]. 机械传动, 2012, 36(3):4-9.
LOU Chun-lei, TANG Jin-yuan, CHEN Si-yu, et al. Analysis of gearbox performance based on LMS operating modal test [J]. Journal of Mechanical Transmission, 2012, 36(3):4-9.
[10] 赵峰, 曹树谦, 于跃斌, 等. 干摩擦双层梁的工作模态实验方法[J]. 振动、测试与诊断, 2013, 33(6):971-979.
ZHAO Feng, CAO Shu-qian, YU Yue-bin, et al. Experimental method of operating modal analysis on double beam modal with dry friction [J]. Journal of Vibration, Measurement and Diagnosis, 2013, 33(6):971-979.
[11] 李晰, 张德义, 闫维明, 等. 基于环境激励的钢管混凝土拱桥工作模态识别及修正[J] .工程力学, 2013, 30(9):81-90.
LI Xi, ZHANG De-yi, YAN Wei-ming, et al. Operational model identification and calibration of CFST arch bridge based on ambient excitation [J]. Engineering Mechanics, 2013, 30(9):81-90.
[12] 刘宇飞, 辛克贵, 樊健生, 等. 环境激励下结构模态参数识别方法综述 [J]. 工程力学, 2014, 31(4): 46-52.
LIU Yu-fei, XIN Ke-gui, FAN Jian-sheng, et al. A review of structure modal identification methods through ambient excitation [J]. Engineering Mechanics, 2014, 31(4): 46-52.
[13] Ward H. Modal analysis theory and testing [M]. Beijing: Institute of Technology Press, 2001.
[14] Peeters, B.; Vanhollebeke, F.; Van der Auweraer, H.: Operational PolyMAX for Estimating the Dynamic Properties of a Stadium Structure during a Football Game [R], Proc. of the 23rd IMAC, Orlando, FL, USA, 2005.
[15] Guillaume, P. et. al.: A Poly-reference Implementation of the Least-Squares Complex Frequency Domain Estimator [R], Proc. of the 21st IMAC, Kissimmee, FL, USA, 2003.
[16] 刘馥清, 安宏伟. 多参考最小二乘复频域(PloyMax/ PolyLSCF)法在汽车轮胎及车身模态参数识别中的应用[J]. LMS首届用户大会论文集,2006.
[17] B. Miller and I. Green, Numerical Techniques for Computing Rotordynamic Properties of Mechanical Gas Face Seals [J]. Journal of Tribology, 2002, 124(4): 775-761.
[18] 刘蕴,董冠华,殷国富. 非接触密封失稳振动分析与结构优化 [J]. 浙江大学学报:工学版,2018, 52(7):45-53.
LIU Yun, DONG Guan-hua, YIN Guo-fu. Vibration analysis and structural optimization of non-contact seal [J]. Journal of Zhejiang University: Engineering Science, 2018, 124(7): 45-53.
[19] 陈源, 彭旭东, 李纪云, 等. 螺旋槽结构参数对干气密封动态特性的影响研究[J]. 摩擦学学报, 2016, 36(4): 397-406.
CHEN Yuan, PENG Xu-dong, LI Ji-yun, et al. The influence of structure parameters of spiral groove on dynamic characteristics of dry gas seal [J]. Tribology, 2016, 36(4): 397–406.
[20] R. H. Myers, D. C. Montgometry. Response Surface Methodology [M]. New York, Wiley and Sons, 1995.
[21] 隋允康,宇慧平。响应面方法的改进及其对工程优化的应用,科学出版社 [M], 2010.

PDF(1805 KB)

Accesses

Citation

Detail

段落导航
相关文章

/