空间可展结构复合材料薄壁圆管铰链多目标优化研究

张赢杰1 孙蓓蓓1 王智磊2 赵枝凯2 陈夜2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (19) : 218-225.

PDF(1632 KB)
PDF(1632 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (19) : 218-225.
论文

空间可展结构复合材料薄壁圆管铰链多目标优化研究

  • 张赢杰1   孙蓓蓓1  王智磊2   赵枝凯2   陈夜2
作者信息 +

Multi-objective optimization for composite thin-walled circular tube hinge of space deployable structures

  • ZHANG Yingjie1, SUN Beibei1, WANG Zhilei2, ZHAO Zhikai2, CHEN Ye2
Author information +
文章历史 +

摘要

复合材料薄壁圆管铰链在卫星天线、太阳翼等大型航天可展结构中具有广阔的应用前景,其结构参数设计极大地影响它在空间的工作性能。为提高复合材料薄壁圆管铰链的力学性能,本文首先建立复合材料卷尺弹簧的解析和有限元模型,分析其弯曲特性,进而建立复合材料薄壁圆管铰链的有限元模型并研究其折展和扭转特性,分析结构参数对铰链性能的影响规律,结果表明,增大开槽长宽比、减小铰链厚度直径比可以明显提高铰链的弯曲和扭转性能。选取铰链结构参数为设计变量,建立多目标优化数学模型,结合最优拉丁超立方试验设计方法,建立结构参数与铰链峰值弯矩、最大应力、扭转刚度之间的RBF神经网络代理模型,通过NSGA-Ⅱ遗传算法进行优化。优化结果表明,铰链的峰值弯矩提高44.8%,扭转刚度提高110%,同时质量下降20.4%,在提高复合材料薄壁圆管铰链力学性能的同时实现了轻量化,使得铰链机构的自驱动能力和自锁定能力有了全面的提高,为复合材料薄壁圆管铰链在空间可展开结构中的实际工程应用提供了理论依据。

Abstract

Composite thin-walled circular tube hinges have broad application prospects in large space deployable structures, such as, satellite antennas and solar wings, and their structural parametric design greatly affects their working performance in space. Here, in order to improve their mechanical performance, firstly, the analytical and finite element models for a composite tape measure spring were established to analyze its bending characteristics. Then the finite element model for a composite thin-walled circular tube hinge was established to study its folding and torsional characteristics and analyze effect laws of structural parameters on the hinge performance. The results showed that increasing the ratio of slotting length to width and reducing the ratio of hinge thickness to diameter can obviously improve the hinge’s bending and torsional performance. The hinge’s structural parameters were taken as design variables to build a multi-objective optimization mathematical model. The optimal Latin hyper-cubic test design method was used to construct the RPF neutral network agent model among structural parameters and hinge’s peak bending moment, maximum stress and torsional stiffness, and it was optimized using the NSGA-Ⅱ genetic algorithm. The optimization results showed that the hinge’s peak bending moment is increased by 44.8%, its torsional rigidity is increased by 110%, and its mass is decreased by 20.4%, so the hinge’s mechanical performance is improved and meanwhile its mass is reduced to enhance the hinge mechanism’s self-driving ability and self-locking one; the study results provide a theoretical basis for practical engineering application of composite thin-walled circular tube hinges in space deployable structures.

关键词

复合材料薄壁圆管铰链 / RBF神经网络 / NSGA-Ⅱ遗传算法 / 多目标优化 / 空间可展结构

Key words

composite thin-walled hinges / RBF neural network / NSGA-Ⅱ genetic algorithm / Multi-objective optimization / Spatial deployable structure

引用本文

导出引用
张赢杰1 孙蓓蓓1 王智磊2 赵枝凯2 陈夜2. 空间可展结构复合材料薄壁圆管铰链多目标优化研究[J]. 振动与冲击, 2019, 38(19): 218-225
ZHANG Yingjie1, SUN Beibei1, WANG Zhilei2, ZHAO Zhikai2, CHEN Ye2. Multi-objective optimization for composite thin-walled circular tube hinge of space deployable structures[J]. Journal of Vibration and Shock, 2019, 38(19): 218-225

参考文献

[1] Yao X F,Ma Y J,Yin Y J,et al. Design theoryand dynamic mechanical characterization of the d-eployable composite tube hinge[J]. Science China,2011,54(4):633-639.
[2] Yee J C,Pellegrino S. Composite Tube Hinges[J]. Journal of Aerospace Engineering,2005,18(4):224-231.
[3] Mobrem M,Adams D. Deployment Analysis ofthe Lenticular Jointed Antennas Onboard the MarsExpress Spacecraft[J]. Journal of Spacecraft &   Rockets,2015,46(2):394-402.
[4] Ömer Soykasap. Deployment analysis of a se-lf-deployable composite boom[J]. Composite Structures,2009,89(3):374-381.
[5] Mallikarachchi H M Y C,Pellegrino S. Quasi-Static Folding and Deployment of Ultrathin Com-posite Tape-Spring Hinges[J]. Journal of Spacecra-ft& Rockets,2011,48(1):187-198.
[6] YANG Hui,DENG Zongquan,LIU Rongqiang,WANG Yan,GUO Hongwei. Optimizing the Qusai-static Folding and Deploying of Thin-Walled TubeFlexure Hinges with Double Slots[J]. Chinese Jou-rnal of Mechanical Engineering,2014,27(02):279-286.
[7] Seffen K A,You Z,Pellegrino S. Folding and deployment of curved tape springs[J]. InternationalJournal of Mechanical Sciences,2000,42(10):2055-2073.
[8] Mallikarachchi H M Y C,Pellegrino S. Optim-ized Designs of Composite Booms with Tape Spr-ing Hinges[C]// 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.2010.
[9] Yang H,Liu R Q,Guo H W,et al. Folding andDeployment of a New Thin-Walled Tube FlexibleHinge[J]. Applied Mechanics & Materials, 2014, 635-637:365-369.
[10] Yang H,Liu R,Wang Y,et al. Experiment and multiobjective optimization design of tape-spri-ng hinges[J]. Structural & Multidisciplinary Optimizat-ion,2015,51(6):1-12.
[11] Khan A,Borowski E,Taha M R. Dynamic   Deployment of Composite Tape Springs[C]// Americ-an Society of Composites Conference.2016.
[12] StéphaneBourgeois,BrunoCochelin,FrançoisGuinot, et al. Buckling analysis of tape springs usinga rod model with flexible cross-sections[J].Europe-an Journal of Computational Mechanics/Revue,2012,21(3-6):184-194.
[13] Mobrem M,Adams D. Deployment Analysis of the Lenticular Jointed Antennas Onboard the Mars Express Spacecraft[J]. Journal of Spacecraft & Rockets,2015,46(2):394-402.
[14] Silver M,Hinkle J,Peterson L. Modeling of  Snap-Back Bending Response of Doubly Slit Cyli-ndrical Shells[C]// AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conf-erence.2013.
[15] Kwok K,Pellegrino S. Folding, Stowage, andDeployment of Viscoelastic Tape Springs[J]. AIAA Journal,2013,51(8):1908-1918.
[16] Mallikarachchi H M Y C,Pellegrino S. Simu-lation of Quasi-Static Folding and Deployment of Ultra-Thin Composite Structures[C]// 49st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dyna-mics, and Materials Conference.2008

PDF(1632 KB)

Accesses

Citation

Detail

段落导航
相关文章

/