针对立体交叉隧道结构地震动力响应特性及相互影响规律等问题,在三向El地震波作用下完成了3种地震烈度、6个工况的交叉隧道振动台试验,试验结果表明:地震烈度越高,隧道各特征点的地震加速度、环向应变越大,在Ⅸ度三向El波作用下,沿上跨隧道墙脚轴线方向,交叉中心断面处最大地震加速度比普通断面(受相邻隧道影响小)小,而环向应变比普通断面大,沿下穿隧道拱腰轴线方向,交叉中心断面处最大加速度比普通断面大,而最大应变比普通断面小。通过建立三维数值模型与试验结果进行了相互验证,数值计算表明:在Ⅸ度三向El波作用下,沿上跨隧道轴向,交叉中心断面处各特征点σ1、σ3及主震方向位移最大值均比普通断面大,沿下穿隧道轴向,交叉中心断面处各特征点σ1、σ3及主震方向位移最大值均比普通断面小。
Abstract
Aiming at problems of seismic response features and their mutual influence laws of a 3-D cross tunnel structure, shaking table tests were conducted for its model under El seismic waves in 3 directions and 6 working conditions with 3 seismic intensities.The test results showed that the higher the seismic intensity, the larger the seismic acceleration and axial strain at the tunnel’s feature points;under El waves in 3 directions and the seismic intensity 9, along the axis of upper tunnel side wall bottom, the maximum seismic acceleration of the cross center section is less than that of a common section, while the maximum hoop strain of the cross center section is larger than that of a common section;along the direction of arch haunch axis of the underpass tunnel, the maximum acceleration of the cross center section is larger than that of a common section, while the maximum axial strain is less than that of a common section. Then a 3-D numerical model was built and used to do numerical simulation.The simulation results were compared with testones to verify each other.The numerical results showed that under El waves in 3 directions and the seismic intensity 9, along the axial direction of upper tunnel, the maximum values of σ1, σ3 and displacement in the main seismic direction at various feature points of cross center section are larger than those of a common section; along the axial direction of the underpass tunnel, the maximum values of σ1, σ3 and displacement in the main seismic direction at various feature points of cross center section are smaller than those of acommon section.
关键词
立体交叉隧道 /
振动台试验 /
响应特性
{{custom_keyword}} /
Key words
Crossing tunnels /
Shaking table test /
Response characteristics
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李玉峰, 彭立敏, 雷明锋. 高速铁路交叉隧道动力学问题研究综述[J]. 现代隧道技术, 2015, 52(02): 8-15.
Li Yufeng, Peng Limin, Lei Mingfeng. Dynamics Issues Regarding High-Speed Railway Crossing Tunnels[J]. Modern Tunnelling Technology, 2015, 52(02): 8-15.
[2] Dowding C, Rozen A. Damage to rock tunnel from earthquake shaking[J]. Journal of Geotechnical Engineering ASCE, 1978, 104(2): 175-191.
[3] Iida H, Hiroto T, Yoshida N, et al. Damage to Daikai subway station[J]. Soils and Foundations, 1996, Special(1): 283-300.
[4] 王文礼, 苏灼谨, 林峻弘等. 台湾集集大地震山岳隧道受损情形之探讨[J]. 现代隧道技术, 2001, 38(2): 52-60.
Wang Wenli, Su Zhuojin Lin Junhong, et al. Discussion on damaged extent of mountainous tunnels due to Jiji earthquake in Taiwan[J]. Modern Tunnelling Technology, 2001, 38(2): 52-60.
[5] 李天斌. 汶川特大地震中山岭隧道变形破坏特征及影响因素分析[J]. 工程地质学报, 2008, 16(6): 742-750.
Li Tianbin. Failure characteristics and influence factor analysis of mountain tunnels at epicenter zones of great wenchuan earthquake[J]. Journal of Engineering Geology, 2008, 16(6): 742-750.
[6] Moghadam M, Baziar M. Seismic ground motion amplification pattern induced by a subway tunnel: Shaking table testing and numerical simulation[J]. Soil Dynamics and Earthquake Engineering, 2016, 83: 81–97.
[7] 王国波, 陈梁, 徐海清, 等. 紧邻多孔交叠隧道抗震性能研究[J]. 岩土力学, 2012, 33(8): 2483-2490.
Wang Guobo, Chen Liang, Xu Haiqing, et al. Study of seismic capability of adjacent overlapping multi-tunnels[J]. Rock and Soil Mechanics, 2012, 33(8): 2483-2490.
[8] 陈磊, 陈国兴, 龙慧. 地铁交叉隧道近场强地震反应特性的三维精细化非线性有限元分析[J]. 岩土力学, 2010, 31(12): 3971-3976+3983.
Chen Lei, Chen Guoxing, Long Hui. 3D refined nonlinear finite element analysis of intersecting metro tunnels under near-field ground motion[J]. Rock and soil mechanics, 2010, 31(12): 3971-3976+3983.
[9] Chen L, Liang B, Wang Z. Dynamic response analysis for intersection of transverse traffic tubes and main tunnel in a highly seismic region[J]. Advanced Materials Research, 2011, 255-260:2510-2514.
[10] Tao L, Zhang B., Zhao X, et al. Shaking table test on the seismic response of cross-structure between subwaystation and tunnel[C]. In: Proceedings of Sixth China-Japan-US Trilateral Symposium on Lifeline Earthquake Engineering, Chengdu, China, 2013, 353-360.
[11] Moss R, Crosariol V. Scale Model shake table testing of an underground tunnel cross section in soft clay[J]. Earthquake Spectra, 2013, 29(4), 1413-1440.
[12] Hashash Y, Hook J, Schmidt B, et al. Seismic design and analysis of underground structures[J]. Tunnelling and Underground Space Technology, 2001, 16(4): 247-293.
[13] Xu H, Li T, Xia L. Shaking table tests on seismic measures of a model mountain tunnel[J]. Tunnelling and Underground Space Technology, 2016, 60:197-209.
[14] 张景, 何川, 耿萍, 等. 穿越软硬突变地层盾构隧道纵向地震响应振动台试验研究[J]. 岩石力学与工程学报, 2017, 36(01): 1-10.
Zhang Jing, He Chuan, Geng Ping, et al. Shaking table tests on longitudinal seismic response of shield tunnel through soft-hard stratum junction[J]. Chinese Journal of Rock mechanics and engineering, 2017, 36(01): 1-10.
[15] 邹炎, 景立平, 李永强. 隧道穿过土层分界面振动台模型试验研究[J]. 岩石力学与工程学报, 2014, 33(增1): 3340-3348.
Zou Yan, Jing Liping, Li Yongqiang. Study of shaking table model test of tunnel through soil interface[J]. Chinese Journal of Rock mechanics and engineering, 2014, 33(Supp.1): 3340-3348.
[16] 申玉生, 高波, 王峥峥, 等. 高烈度地震区山岭隧道模型试验研究[J]. 现代隧道技术, 2008, 45(5): 38-43.
Shen Yusheng, Gao Bo, Wang Zhengzheng, et al. Model test for a road tunnel in the region of high seismic intensity[J]. Modern Tunnelling Technology, 2008, 45(5) : 38-43.
[17] TB10621-2014. 高速铁路设计规范[S]. 北京: 中国铁道出版社, 2015.
TB10621-2014. Code for design of high speed railway[S]. Beijing: China Railway Publishing House, 2015.
[18] GB 50011-2010. 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2010.
GB 50011-2010. Code for seismic design of buildings[S]. Beijing: China Architecture & Building Press, 2010.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}