高速侵彻体撞击充液容器形成的液压水锤效应研究进展

纪杨子燚,李向东,周兰伟,蓝肖颖

振动与冲击 ›› 2019, Vol. 38 ›› Issue (19) : 242-252.

振动与冲击 ›› 2019, Vol. 38 ›› Issue (19) : 242-252.
论文

高速侵彻体撞击充液容器形成的液压水锤效应研究进展

  • 纪杨子燚,李向东,周兰伟,蓝肖颖
作者信息 +

Review of study on hydrodynamic ram effect generated due to high-velocity penetrator impacting fluid-filled container

  • JI Yangziyi, LI Xiangdong,  ZHOU Lanwei, LAN Xiaoying
Author information +
文章历史 +

摘要

受高速侵彻体撞击的充液容器会出现大变形、撕裂甚至解体,这一现象被称作液压水锤效应。将液压水锤效应分成侵彻阶段、冲击阶段、阻滞阶段、穿出阶段和空泡振荡阶段等5个阶段,围绕这5个阶段以及液压水锤效应对充液容器结构的毁伤,阐述了该领域的国内外研究现状。目前液压水锤效应的相关研究还存在着不足,例如,侵彻体动能与初始冲击波的强度的关系及容器前面板和初始冲击波的相互作用;液体域大小和容器结构对空泡的扩展的影响;空泡振荡阶段容器内的压力分布及空泡的形态变化规律。

Abstract

A fluid-filled container impacted by high-velocity penetrators may have large deformation, tearing or even disintegration. This phenomenon is called the hydrodynamic ram effect. This effect can be divided into five phases of penetration phase, shock one, drag one, exit one, and cavity oscillation one. Here, the current studying status of these five phases and damage actions of this effecton container structures were reviewed. The review showed that there are deficiencies in the related studies of this effect, such as, relation between penetrator kinetic energy and intensity of initial shock wave, interaction between container front panel and initial shock wave, influence of liquid domain size and container structure on cavity expansion, pressure distribution inside container and cavity morphological change law in cavity oscillation phase, etc.; they need to be further studied.

关键词

液压水锤效应 / 空泡 / 充液容器 / 综述

Key words

hydrodynamic ram / cavity / fluid-filled container / review

引用本文

导出引用
纪杨子燚,李向东,周兰伟,蓝肖颖. 高速侵彻体撞击充液容器形成的液压水锤效应研究进展[J]. 振动与冲击, 2019, 38(19): 242-252
JI Yangziyi, LI Xiangdong, ZHOU Lanwei, LAN Xiaoying. Review of study on hydrodynamic ram effect generated due to high-velocity penetrator impacting fluid-filled container[J]. Journal of Vibration and Shock, 2019, 38(19): 242-252

参考文献

  [1] KREHL P O. History of shock waves, explosions and impact: a chronological and biographical reference[M]. Springer Science & Business Media, 2008.
  [2] LUNDSTROM E A. Structural response of flat panels to hydraulic ram pressure loading[R].NAVAL WEAPONS CENTER CHINA LAKE CA, 1988.
  [3] BALL R E. The Fundamentals of Aircraft Combat Survivability: Analysis and Design, 2nd Edition[M]. New York: American Institute of Aeronautics and Astronautics, 2003.
  [4] VARAS D, LÓPEZ-PUENTE J, ZAERA R. Experimental analysis of fluid-filled aluminium tubes subjected to high-velocity impact[J]. International Journal of Impact Engineering, 2009,36(1):81-91.
  [5] POWER H L. Fy 74 experimental hydraulic ram studies[R].Monterey, California. Naval Postgraduate School, 1974.
  [6] FUHS E A, BALL E R, POWER L H. FY 73 Hydraulic ram studies[M]. Calhoun, 1973.
  [7] NISHIDA M, TANAKA K. Experimental study of perforation and cracking of water-filled aluminum tubes impacted by steel spheres[J]. International Journal of Impact Engineering, 2006,32(12):2000-2016.
  [8] 郭子涛. 弹体入水特性及不同介质中金属靶的抗侵彻性能研究[D]. 哈尔滨工业大学, 2012.
Guo Zitao. RESEARCH ON CHARACTERISTICS OF PROJECTILE WATER ENTRY AND BALLISTIC RESISTANCE OF TARGETS UNDER DIFFERENT MEDIUMS[D]. Harbin Institute of Technology, 2012(in Chinese)
  [9] 徐双喜, 吴卫国, 李晓彬, 等. 舰船舷侧防护液舱舱壁对爆炸破片的防御作用[J]. 爆炸与冲击, 2010(04):395-400.
XU Shuangxi, WU weiguo, LI Xiaobin, et al. Protective effect of guarding fluid cabin bulkhead under attacking by explosion fragments[J]. EXPLOSION AND SHOCK WAVES, 2010(04):395-400. (in Chinese)
 [10] 陈长海, 侯海量, 张元豪, 等. 钝头弹高速斜侵彻中厚背水金属靶板的机理研究[J]. 工程力学, 2017(11):240-248.
CHEN Changhai, HOU Hailiang , ZHANG Yuanhao et al. MECHANISMS OF MODERATELY THICK WATER-BACKED METAL PLATES OBLIQUELY PENETRATED BY HIGH-VELOCITY BLUNT-NOSED PROJECTILES[J]. ENGINEERING MECHANICS,2017(11):240-248. (in Chinese)
 [11] 陈长海, 侯海量, 张元豪, 等. 中厚背水金属靶板抗钝头弹高速侵彻机制分析[J]. 上海交通大学学报, 2017(12):1428-1434.
CHEN Changhai, HOU Hailiang, ZHANG Yuanhao, et al Research on the Mechanism of Moderately Thick Water-Backed Metal Plates Penetrated by High-Velocity Blunt-Nosed Projectiles[J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY, 2017(12):1428-1434. (in Chinese)
 [12] SWANSON L A. A detailed examination of the pressure produced by a hydrodynamic ram event[D]. University of Cincinnati, 2007.
 [13] BATES K S. Aircraft fuel tank entry wall-projectile interaction studies.[D]. Monterey, California. Naval Postgraduate School, 1973.
 [14] HOLM D P. Hydraulic ram shock wave and cavitation effects on aircraft fuel cell survivability.[D]. Monterey, California. Naval Postgraduate School, 1973.
 [15] VARAS D, ZAERA R, LÓPEZ-PUENTE J. Numerical modelling of the hydrodynamic ram phenomenon[J]. International Journal of Impact Engineering, 2009,36(3):363-374.
 [16] HOPSON M V, TREADWAY S K. Testing and computational analysis of pressure transducers in water filled tank impacted by hypervelocity projectile[J]. International Journal of Impact Engineering, 2008,35(12):1593-1601.
 [17] DELETOMBE E, FABIS J, DUPAS J, et al. Experimental analysis of 7.62mm hydrodynamic ram in containers[J]. Journal of Fluids and Structures, 2013,37:1-21.
 [18] MCMILLEN J H. Shock wave pressures in water produced by impact of small spheres[J]. Physical review, 1945,68(9-10):198.
 [19] DISIMILE P J, SWANSON L A, TOY N. The hydrodynamic ram pressure generated by spherical projectiles[J]. International Journal of Impact Engineering, 2009,36(6):821-829.
 [20] DISIMILE P J, TOY N, SWANSON L. A large-scale shadowgraph technique applied to hydrodynamic ram[J]. Journal of Flow Visualization and Image Processing, 2009,16(4).
 [21] 张伟, 黄威, 任鹏, 等. 高速弹体水平入水产生冲击波特性[J]. 哈尔滨工业大学学报, 2016,48(04):37-41.
ZHANG Wei, HUANG Wei, REN Peng et al. The underwater shock wave characteristics caused by high speed horizontal water entry projectiles[J]. JONRNAL OF HARBIN INSTITUTE OF TECHNOLOGY, 2016,48(04):37-41. (in Chinese)
 [22] STEPKA F S. Projectile-Impact-Induced Fracture of Liquid-Filled, Filament-Reinforced Plastic or Aluminum Tanks.[R].NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CLEVELAND OH LEWIS RESEARCH CEN TER, 1966.
 [23] MORSE C R, STEPKA F S. Effect of projectile size and material on impact fracture of walls of liquid-filled tanks[R].1966.
 [24] STEPKA F S, MORSE C R, DENGLER R P. Investigation of characteristics of pressure waves generated in water filled tanks impacted by high-velocity projectiles[R].National Aeronautics and Space Administration, 1965.
 [25] STEPKA F S. Preliminary investigation of catastrophic fracture of liquid-filled tanks impacted by high-velocity particles[R].National Aeronautics and Space Administration, 1963.
 [26] CHOU P C, SCHALLER R, HOBURG J. Analytical study of the fracture of liquid-filled tanks impacted by hypervelocity particles[R].1967.
 [27] HEYDA J F. Shock Front Variation in Time for High Speed Impact into Water: Proc. Sixth Symposium on Hypervelocity Impact, 1963[C].
 [28] TOWNSEND D, PARK N, DEVALL P M. Failure of fluid dilled structures due to high velocity fragment impact[J]. International journal of impact engineering, 2003,29(1):723-733.
 [29] LECYSYN N, DANDRIEUX A, HEYMES F, et al. Preliminary study of ballistic impact on an industrial tank: Projectile velocity decay[J]. Journal of Loss Prevention in the Process Industries, 2008,21(6):627-634.
 [30] FRY P F. A Review of the Analyses of Hydrodynamic Ram[R].AIR FORCE FLIGHT DYNAMICS LAB WRIGHT-PATTERSON AFB OH, 1976.
 [31] YURKOVICH R. Hydraulic ram: a fuel tank vulnerability study[J]. McDonnell Aircraft Corporation G, 1969,964.
 [32] KAPPEL L G. Hydraulic ram shock phase effects on fuel cell survivability.[D]. Monterey, California. Naval Postgraduate School, 1974.
 [33] LUNDSTROM E A, STULL E. Fluid dynamic analysis of hydraulic ram II (results of experiments)[R].1973.
 [34] CHARTERS A C. The aerodynamic performance of small spheres from subsonic to high supersonic velocities[J]. Journal of the Aeronautical sciences, 1945,12(4):468-476.
 [35] BRAUER H, SUCKER D. Umströmung von Platten, Zylindern und Kugeln: Umströmung von Platten, Zylindern und Kugeln[J]. Chemie Ingenieur Technik, 1976,48(8):665-671.
 [36] HOERNER S F. Fluid-dynamic drag: practical information on aerodynamic drag and hydrodynamic resistance[M]. Hoerner Fluid Dynamics, 1965.
 [37] LEE M. Generation of shock waves by a body during high-speed water entry.[D]. THE UNIVERSITY OF TEXAS AT AUSTIN, 1997.
 [38] BORG J P, COGAR J R, TREDWAY S, et al. Damage resulting from a high-speed projectile impacting a liquid-filled metal tank[J]. WIT Transactions on Modelling and Simulation, 2001,30.
 [39] 李营, 张玮, 杜志鹏, 等. 球形弹体打击作用下宽距水间隔铝板的动态响应特性[J]. 振动与冲击, 2018(01):106-110.
LI Ying, ZHANG Wei, DU Zhipeng, et al. Dynamic responses of wide interval water-spacing aluminum plates under sphere projectile impact[J]. JOURNAL OF VIBRATION AND SHOCK, 2018(01):106-110. (in Chinese)
 [40] 刘雨曦, 任鹏, 拾路. 弹体低速撞击下蓄液结构毁伤特性研究[J]. 振动与冲击, 2018,37(15):84-89.
LIU Yuxi, REN Peng, SHI Lu. Damage characteristics of liquid-filled tanks impacted by low speed projectiles. JOURNAL OF VIBRATION AND SHOCK, 2018, 37(15): 84-89. (in Chinese)
 [41] PATTERSON J W. Fuel cell pressure loading during hydraulic ram.[D]. Monterey, California. Naval Postgraduate School, 1975.
 [42] VARAS D, ZAERA R, LÓPEZ-PUENTE J. Experimental study of CFRP fluid-filled tubes subjected to high-velocity impact[J]. Composite Structures, 2011,93(10):2598-2609.
 [43] 沈晓乐, 朱锡, 侯海量, 等. 高速破片侵彻防护液舱试验研究[J]. 中国舰船研究, 2011,06(3):12-15.
SHEN Xiaole, ZHU Xi, HOU Hailiang et al. Experimental Study on Penetration Properties of High Velocity Fragment into Safety Liquid Cabin[J]. Chinese Journal of Ship Research, 2011,06(3):12-15. (in Chinese)
 [44] 刘荫秋, 李曙光, 吴炳杰, 等. 不同投射物水中弹后空腔的特点[J]. 第三军医大学学报, 1985(02):163-166.
LIU Yinqiu, LI Shunguang, WU Binjie, et al, Properties of the Temporary Cavities in Water Produced with Different Projectiles[J]. J Third Mil Med University; 1985(02):163-166. (in Chinese)
 [45] FOUREST T. Development and validation of bubble dynamics models for Hydrodynamic Ram event in fuel tanks[D]. UNIVERSITE DE BRETAGNE OCCIDENTALE, 2015.
 [46] BLESS S J, FRY P F, BARBER J P, et al. Studies of hydrodynamic ram induced by high velocity spherical fragment simulators[R].DAYTON UNIV OH RESEARCH INST, 1977.
 [47] GONZALEZ M, SPARKS C, KUBES C, et al. Comparison of the Tumbling Behavior and Pressure Evolution of Several API Projectiles in a Hydrodynamic Ram Environment: 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, April 2008, Schaumburg, 2008[C].2008.
 [48] 马丽英,李向东,周兰伟,等.高速破片撞击充液容器拖拽阶段气腔特性研究[J/OL].爆炸与冲击:1-9[2018-07-01].http://kns.cnki.net/kcms/detail/51.1148.O3.20171129.1508.058.html.
MA Liying, LI Xiangdong, ZHOU Lanwei, et al.[J/OL]. EXPLSION AND SHOCK WAVES: 1-9[2018-07-01]. http://kns.cnki.net/kcms/detail/51.1148.O3.20171129.1508.058.html. (in Chinese)
 [49] LECYSYN N, BONY-DANDRIEUX A, APRIN L, et al. Experimental study of hydraulic ram effects on a liquid storage tank: Analysis of overpressure and cavitation induced by a high-speed projectile[J]. Journal of Hazardous Materials, 2010,178(1-3):635-643.
 [50] HELD M. Verification of the equation for radial crater growth by shaped charge jet penetration[J]. International journal of impact engineering, 1995,17(1-3):387-398.
 [51] 顾建农, 张志宏, 王冲, 等. 旋转弹头水平入水空泡及弹道的实验研究[J]. 兵工学报, 2012(05):540-544.
GU Jiannong, ZHANG Zhihong, WANG Chong, et al Experimental Research for Cavity and Ballistics of a Rotating Bullet Entraining Water Levelly[J]. ACTA ARMAMENTARII, 2012(05):540-544. (in Chinese)
 [52] GUO Z, ZHANG W, XIAO X, et al. An investigation into horizontal water entry behaviors of projectiles with different nose shapes[J]. International Journal of Impact Engineering, 2012,49:43-60.
 [53] CARDEA G C, TORVIK P J. l/2 (1) Cavity Growth and Collapse Phase of Hydraulic Ram[J]. Journal of Aircraft, 1974,11(4):252-254.
 [54] COLE R H, WELLER R. Underwater explosions[J]. Physics Today, 1948,1:35.
 [55] FOUREST T, LAURENS J, DELETOMBE E, et al. Analysis of bubbles dynamics created by Hydrodynamic Ram in confined geometries using the Rayleigh–Plesset equation[J]. International Journal of Impact Engineering, 2014,73:66-74.
 [56] FOUREST T, LAURENS J, DELETOMBE E, et al. Confined Rayleigh–Plesset equation for Hydrodynamic Ram analysis in thin-walled containers under ballistic impacts[J]. Thin-Walled Structures, 2015,86:67-72.
 [57] LUNDSTROM E A, FUNG W K. Fluid Dynamic Analysis of Hydraulic Ram IV.(User's Manual for Pressure Wave Generation Model)[R].NAVAL WEAPONS CENTER CHINA LAKE CA, 1976.
 [58] DELETOMBE E, FABIS J, DUPAS J. Vulnerability of fuel tanks with respect to hydrodynamic ram pressure-Experiments and FE modellings, 2011[C].2011.
 [59] LINGENFELTER A J, LIU D, REEDER M F. Time resolved flow field measurements of orifice entrainment during a hydrodynamic ram event[J]. Journal of Visualization, 2017,20(1):63-74.
 [60] LINGENFELTER A J, LIU D. Development for orifce entrainment velocity characterization during a hydrodynamic ram event, 2016[C]. 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. American Institute of Aeronautics and Astronautics, 2016.
 [61] LUNDSTROM E A, FUNG W K. Fluid dynamic analysis of hydraulic ram III (Result of analysis)[R].JOINT TECHNICAL COORDINATING GROUP ON AIRCRAFT SURVIVABILITY, 1976.
 [62] EASON R A. Computer studies of aircraft fuel tank response to ballistic penetrators.[D]., 1978.
 [63] LEE M, LONGORIA R G, WILSON D E. Ballistic waves in high-speed water entry[J]. Journal of fluids and Structures, 1997,11(7):819-844.
 [64] LEE M, LONGORIA R G, WILSON D E. An extended hydraulic ram model[J]. ASME-PUBLICATIONS-PVP, 1996,325:75-82.
 [65] BALL R E. Aircraft fuel tank vulnerability to hydraulic ram: modification of the Northrop finite element, computer code BR-1 to include fluid-structure interaction; theory and user's manual for BR-1HR[R].Monterey, California. Naval Postgraduate School, 1974.
 [66] BALL R E, POWER H L, FUHS A E. Fuel tank wall response to hydraulic ram during the shock phase.[J]. Journal of Aircraft, 1973,10(9):571-572.
 [67] ANKENEY D B. Physical vulnerability of aircraft due to fluid dynamic effects[M]. Neuilly-sur-Seine: AGARD, 1977: 76.
 [68] LUNDSTROM E A. Fluid/structure interaction in hydraulic ram: Proceedings of the hydrodynamic ram seminar, 1977[C].
 [69] MOUSSA N A. The potential for fuel tank fire and hydrodynamic ram from uncontained aircraft engine debris[J]. 1997.
 [70] SMITH M. Development of a bi-modal solution code (BERAM), for the structural response of flat panels to hydrodynamic ram pressure loading, 1991[C].1991.
 [71] SELVARATHINAM A S, STEWART M W, ENGELSTAD S P, et al. Application of Progressive Damage Failure Analysis to Large Aircraft Composite Structures, 2018[C]. American Institute of Aeronautics and Astronautics, 2018.
 [72] FAHRENKROG S L. A study of the crack damage in fuel-filled tank walls due to ballistic penetrators.[D]. Monterey, California. Naval Postgraduate School, 1976.
 [73] ROSENBERG Z, BLESS S J, GALLAGHER J P. A model for hydrodynamic ram failure based on fracture mechanics analysis[J]. International journal of impact engineering, 1987,6(1):51-61.
 [74] REN P, ZHOU J, TIAN A, et al. Experimental investigation on dynamic failure of water-filled vessel subjected to projectile impact[J]. International Journal of Impact Engineering, 2018.
 [75] KIMSEY K D. Numerical simulation of hydrodynamic ram[R].ARMY BALLISTIC RESEARCH LAB ABERDEEN PROVING GROUND MD, 1980.
 [76] SANTINI P, PALMIERI D, MARCHETTI M. Numerical simulation of fluid–structure interaction in aircraft fuel tanks subjected to hydrodynamic ram penetration, 1998[C].1998.
 [77] ANDERSON JR C E, SHARRON T R, WALKER J D, et al. Simulation and analysis of a 23-mm HEI projectile hydrodynamic ram experiment[J]. International journal of impact engineering, 1999,22(9):981-997.
 [78] BHARATRAM G, SCHIMMELS C S A, VENKAYYA V B. Application of MSC/DYTRAN to the Hydrodynamic: MSC User's Conference, Universal City, California, 1995[C].
 [79] SAREEN A K, SMITH M R. Evaluation of an analytical design tool for ballistic dynamics simulation, 1996[C]. Citeseer, 1996.
 [80] 陈钢. 高速弹丸冲击下油箱动态响应的数值模拟[D]. 西北工业大学, 2005.
CHEN Gang. Numerical Simulation of Fuel Tank Response to Projectile Impact[D]. NORTHWESTERN POLYTECHNICAL UNIVESTIY, 2005(in Chinese)
 [81] VIGNJEVIC R, De VUYST T, CAMPBELL J C, et al. Modelling of impact on a fuel tank using smoothed particle hydrodynamics[J]. 2005.
 [82] SPARKS C, HINRICHSEN R, FRIEDMANN D. Comparison and Validation of Smooth Particle Hydrodynamics (SPH) and Coupled Euler Lagrange (CEL) Techniques for Modeling Hydrodynamic Ram: 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, April 2005, Austin, Texas, 2005[C]. American Institute of Aeronautics and Astronautics, 2005.
 [83] BESTARD J, BUCK M, KOCHER B, et al. Hydrodynamic Ram Model Development - Survivability Analysis Requirements, 2012[C]. American Institute of Aeronautics and Astronautics, 2012.
 [84] 李典, 朱锡, 侯海量, 等. 高速杆式弹体侵彻下蓄液结构载荷特性的有限元分析[J]. 爆炸与冲击, 2016,36(01):1-8.
LI Dian, ZHU Xi, HOU Hailiang, el at , Finite element analysis of load characteristic of liquid-filled structure subjected to high velocity long-rod projectile penetration[J]. Explosion and Shock Waves,2016,36(01):1-8. (in Chinese)
 [85] 仲强, 侯海量, 朱锡, 等. 陶瓷/液舱复合结构抗侵彻数值分析[J]. 爆炸与冲击, 2017,37(03):510-519.
ZHONG Qiang, HOU Hailiang, ZHU Xi, et al. Numerical analysis of penetration resistance of ceramic/fluid cabin composite structure[J]. Explosion and Shock Waves, 2017,37(03):510-519. (in Chinese)
 [86] YANG K R. Simulation of hydrodynamic ram phenomenon using MSC Dytran[D]. Monterey, California: Naval Postgraduate School, 2014.
 [87] STEPHANI P, MIDDENDORF P, LEß C. Numerical analysis of the hydrodynamic ram of a CFRP integral tank[J]. WIT Transactions on The Built Environment, 2006,87.
 [88] ZHANG W, REN P, HUANG W, et al. Experimental and numerical study of water-filled vessel impacted by flat projectiles[J]. Journal of Physics: Conference Series, 2014,500(11):112054.
 [89] 唐廷, 朱锡, 侯海量, 等. 高速破片在防雷舱结构中引起的冲击荷载的理论研究[J]. 振动与冲击, 2013,32(06):132-136.
TANG Ting, ZHU Xi, HOU Hailiang, et al. Theory Study of Shock loading Induced by High Speed Fragment in Cabin near Shipboard. , 2013, 32(6): 132-136. (in Chinese)
 [90] 孔祥韶, 吴卫国, 李俊, 等. 爆炸破片对防护液舱的穿透效应[J]. 爆炸与冲击, 2013,33(05):471-478.
Kong Xiangshao, Wu Weiguo, Li Jun, et al. Effects of explosion fragments penetrating defensive liquid-filled cabins[J] Explosion and Shock Waves, 2013,33(05):471-478. (in Chinese)
 [91] LIU F, KONG X, ZHENG C, et al. The Influence of Rubber Layer on the Response of Fluid-Filled Container Due to High-Velocity Impact[J]. Composite Structures, 2017.
 [92] 陈亮, 宋笔锋, 裴扬, 等. 威胁打击方向对飞机油箱液压冲击易损性的影响分析[J]. 机械强度, 2012(6).
CHEN Liang, SONG Bifeng, PEI Yang, et al. IMPACT ANALYSIS OF THREAT DIRECTIONS TO HYDRODYNAMIC RAM VULNERABILITY OF AIRCRAFT FUEL TANK[J]. Journal of Mechanical Strength, 2012(6). (in Chinese)
 [93] 许庆新. 基于SPH方法的冲击动力学若干问题研究[D]. 上海交通大学, 2009.
XU Qingxin, Study of Some Impact Dynamics Problems Based on Smoothed Particle Hydrodynamics Method[D]. Shanghai Jiao Tong University, 2009(in Chinese)
 [94] GUILLAUME P. SIMULATION OF HIGH-VELOCITY DEBRIS IMPACT ON  AIRCRAFT FUEL TANK[D]. CRANFIELD UNIVERSITY, 2012.
 [95] MARTIN A. Simulation of Hydrodynamic Ram during impact of fluid-filled tank  using SPH[D]. CRANFIELD UNIVERSITY, 2011.
 [96] LIANG C, BIFENG S, YANG P. Simulation analysis of hydrodynamic ram phenomenon in composite fuel tank to fragment impact: Measuring Technology and Mechatronics Automation (ICMTMA), 2011 Third International Conference on, 2011[C]. IEEE.
 [97] 李营, 赵鹏铎, 张春辉, 等. 空气夹层对含液结构在球形弹体侵彻作用下动态响应的影响[J]. 振动与冲击, 2018(03):186-194.
LI Ying, ZHAO Pengduo, ZHANG Chunhui, et al. Influences of air-contain structure on dynamic responses of liquid-filled structures under spherical projectile penetration. JOURNAL OF VIBRATION AND SHOCK, 2018, 37(3): 186-194. (in Chinese)
 [98] DELETOMBE E, FABIS J, DUPAS J. Resistance of composite materials and tank structures to the impact and hydraulic ram pressure generated by a ballistic projectile, 2009[C]. EDP Sciences, 2009.
 [99] SAUER M. Simulation of high velocity impact in fluid-filled containers using finite elements with adaptive coupling to smoothed particle hydrodynamics[J]. International Journal of Impact Engineering, 2011,38(6):511-520.
[100] CHARLES A, DELETOMBE E, DUPAS J. A numerical study on cavity expansion in water: hydraulic ram under ballistic impacts, 2012[C].2012.
[101] YANG H Q, DISIMILE P J, CZARNECKI G J. A Multiphase and Multiphysics CFD Technique for Fuel Spurt Prediction with Cavitation and Fluid-Structure Interaction, 2015[C]. American Institute of Aeronautics and Astronautics, 2015.
[102] SMIRNOVA M N, KONDRAT'EV K A. Space debris fragments impact on multi-phase fluid filled containments[J]. Acta Astronautica, 2012,79:12-19.
[103] SMIRNOV N N, KISELEV A B, KONDRATYEV K A, et al. Impact of debris particles on space structures modeling[J]. Acta Astronautica, 2010,67(3-4):333-343.
[104] BLESS S J. Fuel Tank Survivability for Hydrodynamic Ram Induced by High Velocity Fragments: Part I. Experimental Results and Design Summary[R].DAYTON UNIV OH RESEARCH INST, 1979.
[105] KWON Y, YUN K. Numerical Parametric Study of Hydrodynamic Ram.[J]. International Journal of Multiphysics, 2017,11(1).
[106] KIM J H, KIM C, JUN S. Analysis and Test of Hydrodynamic Ram in Welded Metallic Water Tanks[J]. International Journal of Aeronautical and Space Sciences, 2015,16(1):41-49.
[107] 韩璐, 韩庆, 杨爽. 多破片高速冲击下飞机油箱水锤效应数值模拟[J]. 爆炸与冲击, 2018(03):473-484.
HAN Lu, HAN Qing, YANG Shuang. Simulation analysis of hydrodynamic ram in an aircraft fuel tank subjected to high-velocity multi-fragment impact. Explosion and Shock Waves, 2018, 38(3): 473-484. (in Chinese)
[108] 杨砚世, 肖志华, 李向东. 破片撞击燃料箱时水锤效应的数值仿真研究[J]. 爆破器材, 2014(04):26-31.
YANG Yanshi, XIAO Zhihua, LI Xiangdong. Numerical Simulation Study on Hydrodynamic Ram Due to the Penetration of Fuel Tank by High Energy Fragments[J]. Explosive Materials, 2014(04):26-31. (in Chinese)
[109] HEIMBS S, DUWENSEE T, NOGUEIRA A C, et al. Hydrodynamic ram analysis of aircraft fuel tanks with different composite T-joint designs, 2014[C].2014.
[110] 任鹏, 张伟, 刘建华, 等. 水下冲击波作用的铝合金蜂窝夹层板动力学响应研究[J]. 振动与冲击, 2016(02):7-11.
REN Peng, ZHANG Wei, LIU Jian-hua, et al,. Dynamics analysis of aluminium alloy honeycomb core sandwich panels subjected to underwater shock loading. JOURNAL OF VIBRATION AND SHOCK, 2016, 35(2): 7-11. (in Chinese)
[111] KECHAGIADAKIS G, PIRLOT M. Development of a tool for testing PPE under near simultaneous Triple Impacts, 2014[C].2014.
 

Accesses

Citation

Detail

段落导航
相关文章

/