液体火箭POGO振动分析的矢量拟合法

刘 涛1,2,刘锦凡2,唐国安1

振动与冲击 ›› 2019, Vol. 38 ›› Issue (19) : 26-30.

PDF(1373 KB)
PDF(1373 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (19) : 26-30.
论文

液体火箭POGO振动分析的矢量拟合法

  • 刘 涛1,2,刘锦凡2,唐国安1
作者信息 +

Vector fitting method for liquid rocket’s POGO vibration analysis

  • LIU Tao1,2,LIU Jinfan2,TANG Guo’an1
Author information +
文章历史 +

摘要

针对液体火箭的POGO振动现有分析方法存在一定不足的问题,建立了火箭推进-结构系统的传递函数,采用矢量拟合法对传递函数进行有理分式拟合,借助稳态图法确定传递函数稳定的极点,进而通过极点分布判断POGO稳定性。进一步,分析了蓄压器不同设计状态对POGO振动的抑制效果并与临界阻尼法进行了对比,结果表明矢量拟合法比临界阻尼法具有更高的精度,并确定蓄压器PV值在0.157~0.196MPaL范围内抑制效果最好。该方法可为其它液体火箭的POGO振动抑制提供参考。

Abstract

Aiming at shortcomings of existing analysis methods for liquid rocket’s POGO vibration,the transfer function for a rocket propulsion-structure system was established, and the vector fitting method was applied to fitthe transfer function with rational fraction. Then the transfer function’s stable poles were determined with the steady state diagram, and the pole distribution was used to judge POGO stability. Furthermore, the suppression effect of different design states of accumulator on POGO vibration was analyzed and compared with that of the critical damping method. Results showed the vector fitting method has a higher accuracy than the critical damping method does;when the accumulator’s PV value is within the range of 0.157-0.196 MPaL, itssuppression effect on POGO vibration is the best; the proposed vector fitting method can provide a reference for suppressing other liquid rockets’ POGO vibration.

关键词

POGO振动 / 矢量拟合法 / 稳态图 / 蓄压器

Key words

POGO vibration / vector fitting method / stability diagram / accumulator

引用本文

导出引用
刘 涛1,2,刘锦凡2,唐国安1. 液体火箭POGO振动分析的矢量拟合法[J]. 振动与冲击, 2019, 38(19): 26-30
LIU Tao1,2,LIU Jinfan2,TANG Guo’an1. Vector fitting method for liquid rocket’s POGO vibration analysis[J]. Journal of Vibration and Shock, 2019, 38(19): 26-30

参考文献

[1] Larsen C E, “NASA experience with POGO in human spaceflight vehicles,” proceedings of the NATO RTO Symposium ATV-152 on limit-cycle oscillations and other amplitude-limited Self-Excited vibrations, NASA, Washington, D.C., 2008, 5-1–5-23.
[2] Coppolino R N, Lock M H, Rubin S. Space shuttle POGO studies, Aerospace Corp., Houston, TX, 1977, pp. 1–157.
[3] Rubin S. Longitudinal instability of liquid rockets due to propulsion feedback (POGO)[J]. Journal of Spacecraft and Rockets, 1966,3(8):1188-1195.
[4] Lock M H, Rubin S. Passive suppression of POGO on the space shuttle[R]. NASA CR-132452, 1974.
[5] 谭述君, 王庆伟, 吴志刚. 临界阻尼比法在POGO振动稳定性分析中的适用性[J]. 宇航学报, 2015,36(3):284-291.
Tan Shu-jun, Wang Qing-wei, Wu Zhi-gang. Applicability of critical damping ratio method in POGO vibration stability analysis[J]. Journal of Astronautics, 2015,36(3):284-291.
[6] Oppenheim B W, Rubin S. Advanced POGO stability analysis for liquid rockets[J]. Journal of Spacecraft and Rockets,1993,30(3):360-373.
[7] Wang Q W, Tan S J, Wu Z G, et al. Improved modelling method of POGO analysis and simulation for liquid rockets[J]. Acta Astronautica, 2015,107:262-273.
[8] 牛泽雄, 董朝阳, 黄喜元. POGO振动研究的一种新建模方法[J]. 强度与环境, 2012, 39(5): 28-33.
Niu Ze-xiong, Dong Chao-yang, Huang Xi-yuan. A new method of modeling for POGO analysis[J]. Structure & Environment Engineering, 2012, 39(5): 28-33.
[9] 郝雨, 徐得元, 杨琼梁, 等. 液体火箭纵向耦合振动建模及其动态特性分析[J].振动与冲击,2014,24(33):71-76.
Hao Yu, Xu De-yuan, Yang Qiong-liang, etc. Modeling and dynamic characteristic analysis for longitudinal coupled vibration of a liquid -propulsion rocket[J]. Journal of Vibration and Shock, 2014,24(33):71-76.
[10] Hao Yu, Tang Guo-an, Xu De-yuan, etc. Finite-element modeling and frequency-domain analysis of liquid-propulsion launch vehicle[J]. AIAA Journal, 2015,11(53):3297-3304.
[11] 刘锦凡, 孙丹, 陈雪巍, 等.蓄压器膜盒机械刚度对液体火箭POGO振动影响研究[J].振动与冲击,2016,35(19):168-171.
Liu Jinfan, Sun Dan, Chen Xuewei, et al. Influences of mechanical stiffness of accumulator on POGO vibration of liquid rockets[J]. Journal of Vibration and Shock, 2016,35(19):168-171.
[12] Gustavsen B , Semlyen A. Rational approximation of frequency domain responsesby Vector Fitting[J]. IEEE Transactions on Power Delivery, 1999, 14(3):1052-1061.
[13] Gustavsen B. Improving the pole relocating properties of vector fitting[J]. IEEE Transactions on Power Delivery, 2006,21(3) :1587-1592.
[14] Deschrijver D, Mrozowski M, Dhaene T, et al. Macromodeling of multiport systems using a Fast implementation of the vector fitting method[J]. IEEE Microwave and Wireless Components Letters, 2008, 18(6):383-38.
[15] 孙鑫晖, 郝木明, 王淮维. PolyMAX模态参数识别算法的快速实现[J]. 振动与冲击, 2011, 30(10):6-18.
Sun Xin-hui, Hao Mu-ming, Wang Huai-wei. Fast implementation for PolyMAX modal identification algorithm[J]. Journal of Vibration and Shock, 2011, 30(10):6-18.

PDF(1373 KB)

Accesses

Citation

Detail

段落导航
相关文章

/