高压气体对靶板穿孔及其碎片云运动和致损效应影响研究

才源 1,庞宝君 1,迟润强 1,段永攀 1,贾斌1,盖芳芳2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (19) : 31-37.

PDF(2032 KB)
PDF(2032 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (19) : 31-37.
论文

高压气体对靶板穿孔及其碎片云运动和致损效应影响研究

  • 才源 1,庞宝君 1,迟润强 1,段永攀 1,贾斌1,盖芳芳2
作者信息 +

Influences of high pressure gas on target perforation and its debris cloud motion and damage effect

  • CAI Yuan 1  PANG Bao-jun 1  CHI Run-qiang 1  DUAN Yong-pan 1  JIA Bin 1  GAI Fang-fang 2
Author information +
文章历史 +

摘要

应用二级轻气炮发射球形铝合金弹丸撞击充气压力容器模拟装置,研究高压气体对靶板穿孔及其碎片云运动和致损效应的影响。根据试验结果建立了气体压力作为自变量之一的靶板穿孔经验公式。通过X光对高压气体中的碎片云分析发现,气体压力影响碎片云的形态和速度:气体压力增加,对碎片云扩展的阻碍作用增强;气体对碎片云具有减速作用,随着气体压力的增加碎片云减速加快。通过分析被碎片云撞击的观察板,获得了碎片云致损能力与气体压力、弹丸速度和弹丸直径的关系:随着气体压力的增加,碎片云的致损能力降低;在弹丸直径一定的前提下,弹丸速度和气体压力对碎片云的致损能力的影响是相互耦合的;随着弹丸直径的增加碎片云的致损能力增强。
 

Abstract

A two-stage light gas gun was used to launch spherical aluminum alloy projectiles,and impacta gas-filled pressure vessel simulation deviceto investigate influences of high pressure gas on target perforation and its debris cloud motion and damage effect.According to the test results, the target perforation’sempirical formula was established taking gas pressure as one of independent variables.X-ray photography was used to record debris cloud information in high pressure gas.The results showed that gas pressure affects debris cloud’s morphology and velocity, the larger the gas pressure, the smaller the expansion of debris cloud; gas slows down debris cloud, and its slowing down speeds up with increase in gas pressure.Through analyzing the observation plate impacted by debris cloud, it was shown that with increase in gas pressure, debris cloud’s damage ability drops;when projectile diameter keeps constant, effects of projectile velocity and gas pressure on debris cloud’s damage ability are mutually coupled; debris cloud’s damage ability increases with increase in projectile diameter.

Key words

hypervelocity impact / pressure vessel / perforation / debris cloud / flash X-ray radiography

引用本文

导出引用
才源 1,庞宝君 1,迟润强 1,段永攀 1,贾斌1,盖芳芳2. 高压气体对靶板穿孔及其碎片云运动和致损效应影响研究[J]. 振动与冲击, 2019, 38(19): 31-37
CAI Yuan 1 PANG Bao-jun 1 CHI Run-qiang 1 DUAN Yong-pan 1 JIA Bin 1 GAI Fang-fang 2. Influences of high pressure gas on target perforation and its debris cloud motion and damage effect[J]. Journal of Vibration and Shock, 2019, 38(19): 31-37

参考文献

[1] NASA SSN (Space Surveillance Network). SATCAT Box Score [EB/OL]: http://celestrak.com/satcat/boxscore.php, 2019-02-14.
[2] 刘源, 庞宝君. 基于贝叶斯正则化BP 神经网络的铝平板超高速撞击损伤模式识别[J]. 振动与冲击, 2016, 35(12): 22-27.
Liu Yuan, Pang Baojun. Hypervelocity Impact Damage Pattern Recognition on Aluminum Plates Based on Bayesian Regularization BP Neural Network [J]. Journal of Vibration and Shock, 2015, 34(13): 12-17.
[3] N. L. Johnson. Environmentally-Induced Debris Sources[J]. Advances in Space Research, 2004, 34(5): 993-999.
[4] 盖芳芳, 才源, 郝俊才等. 超高速撞击压力容器后壁损伤实验及建模研究[J]. 振动与冲击, 2015, 34(13): 12-17.
Gai Fangfang, Cai Yuan, Hao Juncai, et a1. Tests and modeling for damage of pressure vessels' rear wall caused by hypervelocity impact[J]. Journal of Vibration and Shock, 2015, 34(13): 12-17.
[5] F. Schäfer. Hypervelocity Impact Testing Impact on Pressure Vessels Final Report[R], EMI Report I-27/01, 2001.
[6] Y. T. Igor. Analysis of Burst Conditions of Shielded Pressure Vessels Subjected to Space Debris Impact[J]. Journal of Pressure Vessel Technology, 2005, 127: 179-183
[7] E. L. Christiansen, J. H. Kerr. Debris Cloud Ablation in Gas-Filled Pressure Vessels[J]. Impact Engineering, 1997, 20: 173-184
[8] Y. T. Igor, F. Schäfer. Analysis of the Fracture of Gas-Filled Pressure Vessels under Hypervelocity Impact[J]. Impact Engineering, 1999, 23: 905-919
[9] 庞宝君, 盖芳芳, 管公顺. 高速撞击充气压力容器前壁损伤数值模拟[J]. 中国空间科学技术, 2010, 30(4): 76-82.
Pang Baojun, Gai Fangfang, Guan Gongshun. Numerical Simulation on the Damage of Front Side of Gas-filled Pressure Vessels due to Hypervelocity Impact[J]. China Space Science and Technology, 2010, 30(4): 76-82.
[10] 盖芳芳. 空间碎片超高速撞击下充气压力容器破损预报[D]. 哈尔滨: 哈尔滨工业大学, 2008.
Gai Fangfang. Prediction of Damage and Failure of Gas-filled Pressure Vessels under Space Debris Hypervelocity Impact[D]. Harbin: Harbin Institute of Technology, 2008.
[11] 张永, 霍玉华, 韩增尧等. 卫星高压气瓶的超高速撞击试验[J]. 中国空间科学技术, 2009, 29(1): 56-61.
Zhang Yong, Huo Yuhua, Han Zengyao, et a1. Experiment of Gas-filled Pressure Vessel under Hypervelocity Normal Impact[J]. Chinese Space Science and Technology, 2009, 29 (1): 56-61.
[12] 周广东, 贾光辉, 泉浩芳. 空间碎片撞击气瓶穿孔孔径预测公式研究[J]. 航天器环境工程, 2012, 28(1): 11-14.
Zhou Guangdong, Jia Guanghui, Quan Haofang. The Penetration Hole Size Prediction for Pressure Vessel under Impact of Space Debris[J]. Spacecraft Environment Engineering, 2011, 28(1): 11-14.
[13] F. Schäfer, E. Schneider, M. Lambert. Impact Fragment Cloud Propagation in a Pressure Vessel[J]. Acta Astronautica, 1997, 39(1): 31-40.
[14] M. Lambert, E. Schneider. Hypervelocity Impacts on Gas Filled Pressure Vessels[J]. Impact Engineering, 1997, 20: 491-498.
[15] 盖芳芳, 庞宝君, 管公顺. 超高速撞击充气压力容器二次碎片减速运动建模研究[J]. 高压物理学报, 2012, 26(2): 177-184.
Gai Fangfang. Model for the Deceleration of Secondary Debris Produced by Hypervelocity Impact on Pressure Vessels[J]. Chinese Journal of High Pressure Physics, 2012, 26(2): 177-184.
[16] C. J. Maiden, A. R. McMillan. An Investigation of the Protection Afforded a Spacecraft by a Thin Shield[J]. AIAA, 1964, 2(11): 1992-1998.
[17] N. R. Sorenson. Systematic Investigation of Crater Formations in Metals[C]. Proceedings of the Seventh Hypervelocity Symposium.1965(6): 317.
[18] A. J. Piekutowski. Effects of Scale on Debris Cloud Properties[J]. Int. J Impact Engineering,1997, 20:639-650
[19] A. J. Piekutowski. Characteristics of Debris Clouds Produced by Hypervelocity Impact of Aluminum Spheres with Thin Aluminum Sheets. NASA CR-201003, 1995.

PDF(2032 KB)

Accesses

Citation

Detail

段落导航
相关文章

/