任意边界条件下矩形板薄板自由振动特性分析

杜圆1,李海超1,庞福振1,缪旭弘1,2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (19) : 70-76.

PDF(927 KB)
PDF(927 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (19) : 70-76.
论文

任意边界条件下矩形板薄板自由振动特性分析

  • 杜圆1,李海超1,庞福振1,缪旭弘1,2
作者信息 +

Free vibration characteristics of rectangular thin plates under arbitrary boundary conditions

  • DU Yuan1, LI Haichao1, PANG Fuzhen1, MIAO Xuhong1,2
Author information +
文章历史 +

摘要

提出一种基于改进傅里叶级数的方法,对矩形薄板在任意边界条件下自由振动特性进行求解。通过将薄板振动的位移函数表示成二维傅里叶余弦级数和辅助级数的线性组合,克服传统傅里叶级数法中薄板位移函数边界处不连续的缺陷。基于位移函数列出矩形薄板拉格朗日方程,然后通过Hamilton原理求解得到矩形薄板自由振动频率与相应位移函数的系数。本文计算结果与文献及有限元解吻合良好,方法准确可靠。此外,通过改变边界约束弹簧刚度模拟任意边界条件;大量计算表明,固支边界条件与弹性边界条件组合中,随着固支边条界范围增大,矩形薄板无量纲频率参数呈增大趋势。简支及自由边界条件与弹性边界条件组合中,随着弹性边条界的增多,矩形薄板无量纲频率参数呈增大趋势。

Abstract

A method based on improved Fourier series method (IFSM) was proposed to solve free vibration characteristics of rectangular thin plates under arbitrary boundary conditions. The plate vibration displacement function was expressed as a linear combination of 2-D Fourier cosine series and auxiliary series to overcome the defect of vibration displacement function being dis-continuous at boundary using the traditional Fourier series method. A plate’s energy functional was established based on vibration displacement function. Using Hamilton principle, a rectangular thin plate’s natural frequencies and the corresponding displacement function’s coefficients were solved. The calculation results agreed well with those published in literature and using the finite element method to verify the correctness and reliability of the proposed method. Boundary restraint springs’ stiffness values were changed to simulate arbitrary boundary conditions. A lot of calculation results showed that in combination of fixed boundary conditions and elastic ones, dimensionless frequencies of a rectangular thin plate grow with increase in the range of fixed boundary conditions; in combination of simply supported and free boundary conditions and elastic ones, dimensionless frequencies of a rectangular thin plate grow with increase in the range of elastic boundary conditions.

关键词

矩形薄板 / 振动特性 / 改进傅里叶级数 / 弹性边界条件

Key words

Rectangular Thin Plates / Vibration Characteristic / Improved Fourier Series Method / Elastic boundary condition

引用本文

导出引用
杜圆1,李海超1,庞福振1,缪旭弘1,2. 任意边界条件下矩形板薄板自由振动特性分析[J]. 振动与冲击, 2019, 38(19): 70-76
DU Yuan1, LI Haichao1, PANG Fuzhen1, MIAO Xuhong1,2. Free vibration characteristics of rectangular thin plates under arbitrary boundary conditions[J]. Journal of Vibration and Shock, 2019, 38(19): 70-76

参考文献

[1] Liew K M, Xiang Y, Kitipornchai S. Transverse vibration of thick rectangular plates—I. Comprehensive sets of boundary conditions[J]. Computers & structures, 1993, 49(1): 1-29.
[2] Li J J, Cheng C J. Differential quadrature method for nonlinear vibration of orthotropic plates with finite deformation and transverse shear effect[J]. Journal of sound and vibration, 2005, 281(1): 295-309.
[3]  Xiaofei Y W C Z H. ANALYTICAL SOLUTION FOR THE FORCED VIBRATION OF ORTHOTROPIC RECTANGULAR THIN PLATES [J][J]. Journal of Dynamics and Control, 2011, 1: 004.
[4] Shen Y, Gibbs B M. An approximate solution for the bending vibrations of a combination of rectangular thin plates[J]. Journal of sound and vibration, 1986, 105(1): 73-90.
[5] Cho D S, Vladimir N, Choi T M. Approximate natural vibration analysis of rectangular plates with openings using assumed mode method[J]. International Journal of Naval Architecture and Ocean Engineering, 2013, 5(3): 478-491.
[6]  Reddy J N. Large amplitude flexural vibration of layered composite plates with cutouts[J]. Journal of Sound and Vibration, 1982, 83(1): 1-10. 
[7] Aksu G, Ali R. Determination of dynamic characteristics of rectangular plates with cutouts using a finite difference formulation[J]. Journal of Sound and Vibration, 1976, 44(1): 147-158.
[8] D.J.Gorman. Free vibration analysis of Mindlin plates with uniform elastic edge support by the superposition method[J]. Journal of Sound and Vibration, 1997, 207, 335-350.
[9] Li H, Pang F, Wang X, et al. Benchmark Solution for Free Vibration of Moderately Thick Functionally Graded Sandwich Sector Plates on Two-Parameter Elastic Foundation with General Boundary Conditions[J]. Shock and Vibration, 2017, 2017. WOS:000411576100001
[10] Li W L, Zhang X, Du J, et al. An exact series solution for the transverse vibration of rectangular plates with general elastic boundary supports[J]. Journal of Sound and Vibration, 2009, 321(1): 254-269.Hu, W.C.L. and J.P. Raney. Experimental and analytical study of vibrations of joined shells. Aiaa Journal 2012; 5(5): 976-980.
[11] Xie X, Zheng H, Jin G. Free vibration of four-parameter functionally graded spherical and parabolic shells of revolution with arbitrary boundary conditions[J]. Composites Part B: Engineering, 2015, 77: 59-73.

PDF(927 KB)

Accesses

Citation

Detail

段落导航
相关文章

/