地下洞室爆破开挖诱发围岩损伤特性及PPV阈值研究

杨建华,吴泽南,姚池,蒋水华

振动与冲击 ›› 2019, Vol. 38 ›› Issue (2) : 131-139.

PDF(1523 KB)
PDF(1523 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (2) : 131-139.
论文

地下洞室爆破开挖诱发围岩损伤特性及PPV阈值研究

  • 杨建华,吴泽南,姚池,蒋水华
作者信息 +

Characteristics and PPV thresholds of rock damages under underground blasting excavation

  • YANG Jianhua,WU Zenan,YAO Chi,JIANG Shuihua
Author information +
文章历史 +

摘要

地下洞室爆破开挖产生的围岩损伤主要由爆破荷载和地应力重分布共同作用引起。针对圆形隧洞全断面毫秒延迟爆破开挖过程,采用LS-DYNA有限元数值模拟研究了不同地应力水平下爆破开挖诱发围岩损伤的机理及爆破损伤PPV阈值变化规律。研究表明,地应力对爆破荷载产生的张拉损伤起抑制作用,高地应力条件下,爆破荷载产生的岩体损伤仅限于围岩表层,地应力重分布引起的岩体压剪破坏是围岩中大范围损伤区形成的主要原因;爆破过程中开挖面上地应力瞬态释放所产生的附加动应力也是影响围岩损伤的重要因素,相比于准静态卸荷,地应力瞬态卸荷产生的围岩损伤范围更大;随着地应力水平的提高,岩体爆破损伤的PPV阈值呈先增大后减小的变化趋势,地下洞室爆破安全振动控制标准应考虑地应力状态的影响。

Abstract

When underground openings are excavated with the drill and blast method,the rock damage surrounding openings is induced mainly by the combined effects of blast loading and in situ stress redistribution.For a circular tunnel excavated with the full-face millisecond delay blasting method,a numerical model was established to investigate the mechanism of rock damage under different stress levels.The PPV thresholds for the initiation of blast damage were also studied.The numerical studies were performed by using the finite element software LS-DYNA.The results show that the tensile failure of rock caused by blast loading is suppressed by in situ stresses.When the in situ stress reaches a higher level,the blast-induced damage is distributed only in the immediate vicinity of tunnel walls.The stress redistribution can cause a wider damage zone on the tunnel profile in a compression-shear mode.The additional dynamic stress that arises from the transient stress release on blast-created excavation surfaces is another important factor affecting the behavior of rock damages.Compared with the quasi-static stress redistribution,the transient stress release generates a larger damage zone.With the increase of the in situ stress levels,the PPV thresholds for the initiation of blast damage first increase and then decrease.Therefore,under underground blasting excavation,the influence of in situ stress on blast damage should be considered in the safety control standards of blasting vibrations.

关键词

地下洞室 / 爆破 / 地应力 / 岩体损伤 / PPV阈值

Key words

 underground opening / blasting / in situ stress / rock damage / PPV threshold

引用本文

导出引用
杨建华,吴泽南,姚池,蒋水华. 地下洞室爆破开挖诱发围岩损伤特性及PPV阈值研究[J]. 振动与冲击, 2019, 38(2): 131-139
YANG Jianhua,WU Zenan,YAO Chi,JIANG Shuihua. Characteristics and PPV thresholds of rock damages under underground blasting excavation[J]. Journal of Vibration and Shock, 2019, 38(2): 131-139

参考文献

[1] Martino J B, Chandler N A. Excavation-induced damage studies at the underground research laboratory[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1413-1426.
[2] Zhu Z M, Mohanty B, Xie H P. Numerical investigation of blasting-induced crack initiation and propagation in rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(3): 412-424.
[3] 唐红梅, 周云涛, 廖云平. 地下工程施工爆破围岩损伤分区研究[J]. 振动与冲击, 2015, 34(23): 202-206.
TANG Hong-mei, ZHOU Yun-tao, LIAO Yun-ping. Damage zone of surrounding rock of underground engineering under construction blasting[J]. Journal of Vibration and Shock, 2015, 34(23): 202-206.
[4] Ma G W, An X M. Numerical simulation of blasting-induced rock fractures[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(6): 966-975.
[5] Yilmaz O, Unlu T. Three dimensional numerical rock damage analysis under blasting load[J]. Tunnelling and Underground Space Technology, 2013, 38: 266-278.
[6] 魏晨慧, 朱万成, 白羽, 等. 不同地应力条件下切缝药包爆破的数值模拟[J]. 爆炸与冲击, 2016, 36(2): 161-169.
WEI Chen-hui, ZHU Wan-cheng, BAI Yu, et al. Numerical simulation on cutting seam cartridge blasting under different in-situ stress conditions[J]. Explosion and Shock Waves, 2016, 36(2): 161-169.
[7] 李夕兵, 姚金蕊, 宫凤强. 硬岩金属矿山深部开采中的动力学问题[J]. 中国有色金属学报, 2011, 21(10): 2551-2563.
LI Xi-bing, YAO Jin-rui, GONG Feng-qiang. Dynamic problems in deep exploitation of hard rock metal mines[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(10): 2551-2563.
[8] 朱万成, 左宇军, 尚世明, 等. 动态扰动触发深部巷道发生失稳破裂的数值模拟[J]. 岩石力学与工程学报, 2007, 26(5): 915-921.
ZHU Wan-cheng, ZUO Yu-jun, SHANG Shi-ming, et al. Numerical simulation of instable failure of deep rock tunnel triggered by dynamic disturbance[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(5): 915-921.
[9] 杨栋, 李海波, 夏祥, 等. 高地应力条件下爆破开挖诱发围岩损伤的特性研究[J]. 岩土力学, 2014, 35(4): 1110-1116.
YANG Dong, LI Hai-bo, XIA Xiang, et al. Study of blasting-induced dynamic damage of tunnel surrounding rocks under high in-situ stress[J]. Rock and Soil Mechanics, 2014, 35(4): 1110-1116.
[10] 贾虎, 徐颖. 岩体开挖爆炸应力损伤范围研究[J]. 岩石力学与工程学报, 2007, 26(增1): 3489-3489.
JIA Hu, XU Ying. Study on stress damage zone in excavation of rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(Supp.1): 3489-3489.
[11] 李新平, 陈俊桦, 李友华, 等. 溪洛渡电站地下洞室群爆破地震效应的研究[J]. 岩石力学与工程学报, 2010, 29(3): 493-501.
LI Xinping, CHEN Junhua, LI Youhua, et al. Study of blasting seismic effects of underground chamber group in Xiluodu hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(3): 493-501.
[12] 陈明, 何文学, 卢文波, 等. 隧洞开挖爆破空气超压诱发围岩振动机理[J]. 振动与冲击, 2017, 36(12): 12-17.
CHEN Ming, HE Wen-xue, LU Wen-bo, et al. Studies on the vibration of tunnel surrounding rock induced by air overpressure[J]. Journal of Vibration and Shock, 2017, 36(12): 12-17.
[13] Lu W B, Yang J H, Yan P, et al. Dynamic response of rock mass induced by the transient release of in-situ stress[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 53(9): 129-141.
[14] Taylor L M, Chen E P, Kuszmaul J S. Microcrack-induced damage accumulation in brittle rock under dynamic loading[J]. Computer Methods in Applied Mechanics and Engineering, 1986, 55(3): 301-320.
[15] Furlong J R, Davis J F, Alme M L. Modeling the dynamic load/unload behavior of ceramics under impact loading[R]. RDA-TR-0030–0001, Arlington: R and D Associates, 1990.
[16] 王志亮, 郑明新. 基于TCK损伤本构的岩石爆破效应数值模拟[J]. 岩土力学, 2008, 29(1): 230-234.
WANG Zhi-liang, ZHENG Ming-xin. Numerical simulation of effect of rock blasting based on TCK damage constitutive model[J]. Rock and Soil Mechanics, 2008, 29(1): 230-234.
[17] 胡英国, 卢文波, 陈明, 等. 岩石爆破损伤模型的比选与改进[J]. 岩土力学, 2012, 33(11): 3278-3284.
HU Ying-guo, LU Wen-bo, CHEN Ming, et al. Comparison and improvement of blasting damage models for rock[J]. Rock and Soil Mechanics, 2012, 33(11): 3278-3284.
[18] Li H B, Xia X, Li J C, et al. Rock damage control in bedrock blasting excavation for a nuclear power plant[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(2): 210–218.
[19] 褚怀保, 叶红宇, 杨小林, 等. 基于损伤累积的爆破振动传播规律试验研究[J]. 振动与冲击, 2016, 35(2): 173-177.
CHU Huai-bao, YE Hong-yu, YANG Xiao-lin, et al. Experiments on propagation of blasting vibration based on damage accumulation[J]. Journal of Vibration and Shock, 2016, 35(2): 173-177.
[20] Ramulu M, Chakraborty A K, Sitharam T G. Damage assessment of basaltic rock mass due to repeated blasting in a railway tunnelling project–A case study[J]. Tunnelling and Underground Space Technology, 2009, 24(2): 208-221.

PDF(1523 KB)

Accesses

Citation

Detail

段落导航
相关文章

/