基于灰度图像纹理分析的柴油机失火故障特征提取

刘鑫1,贾云献1,苏小波1,2,邹效3

振动与冲击 ›› 2019, Vol. 38 ›› Issue (2) : 140-145.

PDF(1335 KB)
PDF(1335 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (2) : 140-145.
论文

基于灰度图像纹理分析的柴油机失火故障特征提取

  • 刘鑫1,贾云献1,苏小波1,2,邹效3
作者信息 +

Fault feature extraction for diesel engine misfires based on the gray image texture analysis

  • LIU Xin1,JIA Yunxian1,SU Xiaobo1,2,ZOU Xiao3
Author information +
文章历史 +

摘要

柴油机失火是其常见的故障模式,传统的诊断方法不仅参数获取困难且原始信号易受噪声污染导致准确性较差。针对此问题,提出了一种基于灰度图像纹理分析的二维故障特征提取模型,可以有效的降低噪声污染,简化计算过程。首先,将时域振动信号转化为灰度图,然后通过局部二值模式对灰度图进行局部纹理分析,提取其局部特征,最后通过二维傅立叶变换识别灰度图的特征频率,达到降噪及识别特征频率的目的。以三缸四冲程柴油机为研究对象,设计了柴油机失火故障的预置试验,采集排气噪声和缸盖振动信号对提出的方法进行验证。结果表明,该方法能有效降低信号噪声,识别柴油机的故障特征。

Abstract

Misfire is a common fault in engines,and the traditional fault diagnosis approaches are of the problems of noise pollution and difficulty in parameters obtaining,which make a bad accuracy.Aiming at these problems,a 2D fault feature extraction model based on the gray image texture analysis was proposed,which can be used to reduce noise pollution and simplify the calculation process.A 1D time-domain signal was converted into a 2D gray image,then the texture analysis on the gray image was introduced based on the Local Binary Patterns (LBP) to find out local features.The fault features of the gray image were then extracted based on the 2D FFT with the purpose of reducing the noise pollution.Taking a three-cylinder four-stroke diesel engine as an object,a predesigned misfire fault experiment for the diesel engine was carried out to collect the exhaust noise and cylinder head vibration signals for fault diagnosis,which demonstrates the accuracy of the proposed method.

关键词

灰度图像 / 局部二值模式 / 二维傅立叶变换 / 柴油机 / 振动信号

引用本文

导出引用
刘鑫1,贾云献1,苏小波1,2,邹效3. 基于灰度图像纹理分析的柴油机失火故障特征提取[J]. 振动与冲击, 2019, 38(2): 140-145
LIU Xin1,JIA Yunxian1,SU Xiaobo1,2,ZOU Xiao3. Fault feature extraction for diesel engine misfires based on the gray image texture analysis[J]. Journal of Vibration and Shock, 2019, 38(2): 140-145

参考文献

[1] 孙宜权,张英堂,李志宁,等. 运用Vold-Kalman阶比跟踪的发动机失火故障在线诊断[J]. 振动、测试与诊断,2013,33(6):1014-1018.
Sun Y Q, Zhang Y T, Li Z N, et al. Method for Diagnosing Misfiring Fault of Engine Online Based on Vold-Kalman Order Track [J]. Journal of Vibration, Measurement & Diagnosis, 2013, 33(6): 1014-1018.
[2] Kedadouche M, Thomas M, Tahan A. A comparative study between Empirical Wavelet Transforms and Empirical Mode Decomposition Methods: Application to bearing defect diagnosis [J]. Mechanical Systems and Signal Processing, 2016 (81): 88-107.
[3] Liu X, Jia Y X,He Z W,et al. Application of EMD-WVD and particle filter for gearbox fault feature extraction and remaining useful life prediction [J]. Journal of Vibroengineering, 2017, 19 (3):1793-1808.
[4] Zhou Y B, Liu Y B, Xin W D, er al. Gear fault feature extraction based on the combination of Gabor reconstruction and Bispectral analysis [C]. Proceedings of the 31st Chinese Control Conference, July, 2012: 3745-3749.
[5] 胡海锋,陈苏婷. Gabor 小波和改进LBP 的零件表面粗糙度识别[J]. 中国图象图形学报, 2014,19 (11):1623-1629.
Hu H F,Chen S T. Recognition of work piece surface roughness based on Gabor wavelet and improved LBP[J]. Journal of Image and Graphics,2014,19 (11): 1623-1629.
[6] Van T D, U-Pil C. Signal model-based fault detection and diagnosis for induction motors using features of vibration signal in two-dimension domain [J]. Journal of Mechanical Engineering, 2011, 57(9): 655-666.
[7] Uddin J, Islam Md R, Kim J, et al. A two-dimensional fault diagnosis model of induction motors using a Gabor filter on Segmented images [J]. International Journal of Control and Automation, 2016, 9(1): 11-22.
[8] Ojala T, Pietikäinen M, Harwood D. A comparative study of texture measures with classification based on featured distributions [J]. Pattern Recognition, 1996, 29(1): 51-59.
[9] Liu P Z, Guo J M, Kosin C, et al. Fusion of color histogram and LBP-based features for texture image retrieval and classification [J]. Information Sciences, 2017, 390: 95–111.
[10] Ahonen T, Hadid A, Pietikainen M. Face recognition with local binary patterns[C]. Proceedings of European Conference on Computer Vision, Prague, Czech Republic, 2004, 469-481.
[11] Ning J, Zhang L, Zhang D, et al. Robust object tracking using joint color-texture histogram [J]. International Journal of Pattern Recognition and Artificial Intelligence, 2009, 23(7): 1245-1263.
[12] Jia S, Hu J, Zhu J S, et al. Three-Dimensional Local Binary Patterns for Hyperspectral Imagery Classification [J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(4): 2399-2413.
[13] Swrtel O, Kong J, Shimada H, et al. Computer-aided prognosis of neuroblastoma on whole-slide images: Classification of stromal development [J]. Pattern Recognition, 2009, 42(6): 1093-1103.
[14] Li L, Lao S Y, Fieguth P W, et al. Median Robust Extended Local Binary Pattern for Texture Classification[J]. IEEE Transactions on Image Processing, 2016, 25(3): 1368-1381.
[15] Noskov M V, Tutatchikov V S. Modification of a Two-Dimensional Fast Fourier Transform Algorithm by the Analog of the Cooley-Tukey Algorithm for a Rectangular Signal [J]. Pattern Recognition and Image Analysis, 2015, 25, (1): 81-83.

PDF(1335 KB)

Accesses

Citation

Detail

段落导航
相关文章

/