地震作用下回填砂地基沉入式钢圆筒防波堤变形机理分析

冯国俊1,2,宋波 1,2,王荣2,3

振动与冲击 ›› 2019, Vol. 38 ›› Issue (2) : 59-66.

PDF(2947 KB)
PDF(2947 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (2) : 59-66.
论文

地震作用下回填砂地基沉入式钢圆筒防波堤变形机理分析

  • 冯国俊1,2,宋波 1,2,王荣2,3
作者信息 +

Deformation mechanism of embedded steel cylinder breakwaters with backfill sand foundation under seismic action

  • FENG Guojun1,2,SONG Bo1,2,WANG Rong2,3
Author information +
文章历史 +

摘要

为分析沉入式钢圆筒防波堤变形机理,通过振动台试验和数值模拟研究了回填砂地基沉入式钢圆筒防波堤的动力响应影响。研究结果表明当地震波加速度峰值为3.2 m/s2时防波堤筒外回填砂产生明显的液化滑移现象,且由于液化导致筒外回填砂对防波堤的侧向力改变,防波堤试验模型发生倾斜现象,建议优先对筒外回填砂进行改良;通过数值模拟对防波堤抗震性能设计极限值进行分析,当设计地震动为3.2 m/s2时,由于钢圆筒屈服强度高,钢圆筒处于弹性阶段,损伤程度主要由水平残余位移决定。通过数值模拟研究了钢圆筒应力影响规律,发现了防波堤钢圆筒的薄弱环节,可为工程设计提供参考依据。

Abstract

The dynamic responses of embedded steel cylinder breakwaters with backfill sand foundation were studied by shaking table tests and numerical simulations in order to comprehend its deformation mechanism.The results show that the slip phenomenon of the backfill sand outside cylinder becomes obvious under seismic waves of the peak ground acceleration 3.2 m/s2 in shaking table tests,and the tested breakwater model tilts by reason of the lateral force change due to liquefaction,so it is advised that the backfill sand outside cylinder should be improved in priority.The design limit of the seismic performances of breakwaters was analyzed by numerical simulations.When the design ground motion is 3.2 m/s2,the steel cylinder is still in an elastic stage on account of its high yield strength and the  damage degree is mainly determined by the residual horizontal displacement.The effects of the stresses in the wall of steel cylinder were studied by numerical simulations,and the weak points were found out,which can provide reference to practical engineering designs.

关键词

防波堤 / 钢圆筒 / 变形机理 / 沉入式 / 地震

Key words

breakwater / steel cylinder / deformation mechanism / embedded / seismic

引用本文

导出引用
冯国俊1,2,宋波 1,2,王荣2,3. 地震作用下回填砂地基沉入式钢圆筒防波堤变形机理分析[J]. 振动与冲击, 2019, 38(2): 59-66
FENG Guojun1,2,SONG Bo1,2,WANG Rong2,3. Deformation mechanism of embedded steel cylinder breakwaters with backfill sand foundation under seismic action[J]. Journal of Vibration and Shock, 2019, 38(2): 59-66

参考文献

[1]  稲富隆昌,善功企,外山進一等. 1995年兵庫県南部地震による港湾施設等被害報告[R]. 港湾空港技術研究所, 857, 1997, 550-647.
Inatomi T, Zen K, Toyama S et al, Damage to port and port–related facilities by the 1995 Hyogoken–Nanbu earthquake[R]. Technical note of the port and harbour research institute ministry of transport, Japan, 857, 1997, 550-647.
[2]  Ozutsumi O, Sawada S, Iai S. Effective stress analyses of liquefaction-induced deformation in river dikes[J]. Soil Dynamics and Earthquake Engineering, 2002(22): 1075-1082.
[3]  菅野高弘, 北村卓也, 森田年一等. 鋼板セルの地震時挙動に関する研究[R]. 第10 回日本地震工学シンポジウム, 1998, 2: 1867-1872.
Sugano T, Kitamura, T, Morita T, et al. Study on the Behavior of Steel Plate Cellular Bulkheads during Earthquake[R]. Proc. 10th Japan Earthquake Engineering Symposium, 1998, 2: 1867-1872.
[4]  方云, 东烟郁生, A .Ghalandarzadeh等. 地震液化条件下重力式码头的变形破坏机理[J]. 地球科学——中国地质大学报. 2001, 26(4): 415-418.
FANG Yun, IKUO Towhata, ABBAS Ghalandarzadeh, et al. Mechanism of Deformation and Failure of Gravity-Type Quay Walls under Earthquake Liquefaction[J]. Earth Science—Journal of China University of Geosciences. 2001, 26(4): 415-418.
[5]  李炎保, 吴永强, 蒋学炼. 国内外防波堤损坏研究进展评述[J]. 中国港湾建设, 2004(6): 53-56.
LI Yan-bao, WU Yong-qiang, JIANG Xue-lian. A Review of the Development of Research on Breakwater Failures at Home and Abroad[J]. China Harbour Engineering, 2004(6): 53-56.
[6]  王丽艳, 姜朋明, 刘汉龙. 砂性地基中防波堤地震残余变形机制分析与液化度预测法[J]. 岩土力学, 2010, 31(11): 3556-3562.
WANG Li-yan, JIANG Peng-ming LIU Han-long. Mechanism analysis of residual liquefied deformation of breakwater during earthquake[J]. Rock and Soil Mechanics, 2010, 31(11): 3556-3562.
[7]  王桂萱, 云高杰. 核电防波堤地基的有效应力法液化及变形分析[J]. 辽宁工程技术大学学报(自然科学版), 2016, 35(11): 1284-1289.
WANG Gui-xuan, YUN Gao-jie. Nuclear Power Breakwater Foundation’s Effective Stress Method Liquefaction and Deformation Analysis[J]. Journal of PLA University of Science and Technology, 2016, 35(11): 1284-1289.
[8] Working Group No. 34 of the Maritime Navigation Commission International Navigation Association. seismic design guidelines for port structure[S]. A. A. Balkema, 2001.
[9] Byrne P M, Park S S. Seismic liquefaction: centrifuge and numerical modeling[A]. Third International Symposium on FLAC and FLAC3D Numerical Modeling in Geomechanics, Ontario: 2003.
[10] 工程地质手册编委会. 《工程地质手册》(第四版)[R]. 中国: 中国建筑工业出版社, 2007.
[11] 《根入れ式鋼板セル工法  設計・施工マニュアル》[R]. 日本: 根入れ式鋼板セル協会, 2005.
[12] Samar Daoud, Imen Said, Samir Ennour et al. Numerical analysis of cargo liquefaction mechanism under the swell motion [J]. Marine Structures, 2018(57): 52-71.
[13] Reza Daryaei, Abolfazl Eslami. Scaled model tests and numerical analyses on nonlinear dynamic response of soft grounds[J]. Soil Dynamics and Earthquake Engineering, 2017(97): 241-250.
[14] Susumu Iai. Similitude for Shaking Table Test on Soil-Structure-Fluid Model in 1g Gravitational Field[J]. Report of the PHRI, 1988, 27(3): 1-24.
[15] 香川崇章. 土構造物の模型振動実験における相似則[C]. 土木学会論文報告集,1978(275): 66-97.
KAGAWA, T. On the similitude in model vibration tests of earth-structures[C]. Proc. of Japan Society of Civil Engineering, 1978(275): 66-97.
[16] 国生剛治,岩楯敞広.. 軟弱地盤の非線形震動特性についての模型振動実験と解析[C]. 土木学会論文報告集, 1979(285): 57-67.
KOKUSHO T, IWATATE T. Scaled model tests and numerical analyses on nonlinear dynamic response of soft grounds[C]. Proc. of Japan Society of Civil Engineering, 1979(285): 57-67.

PDF(2947 KB)

255

Accesses

0

Citation

Detail

段落导航
相关文章

/