高置冷却水箱是核电厂非能动安全壳冷却系统(PCS)的重要组成部分,在进行动力分析时,必须考虑冷却水与屏蔽厂房之间的流固耦合(FSI)效应。由于FSI效应问题复杂,数值分析耗时较长,因此,在研究核岛结构动力分析时,有必要采用简化方法,在满足计算精度要求的前提下,提高计算效率。基于Housner模型,提出一种考虑液体-水箱相互作用的简化模型。采用ADINA软件分别进行水箱FSI模型和简化模型的核岛结构三向地震反应分析,分析了FSI模型和简化模型结构反应的峰值加速度、楼层反应谱和有效应力相对误差。结果表明:提出的水箱简化模型可用于高置冷却水箱核岛结构三向地震反应分析,能够很好地模拟FSI效应。
Abstract
High cooling water tank is an important component of the passive containment cooling system (PCS) in a nuclear island building,and the fluid-structure interaction (FSI) between cooling water and shield building should be considered in dynamic analysis.The FSI effect is complex and it will take a long computing time in numerical analysis,a simplified method needs to be explored to improve the calculation efficiency under the condition of satisfying a certain computing accuracy.Based on the Housner model,a simplified liquid-tank interaction model was proposed,which could be used in the dynamic analysis of PCS water tank.Three-dimensional seismic response analyses on the FSI model and simplified model were done for some nuclear island building by using ADINA software.The peak accelerations,acceleration spectra of floor responses and effective stresses by the FSI model and simplified model were compared and the relative errors were analyzed.The results show that the proposed simplified liquid-tank interaction model is suitable for the dynamic analysis of nuclear island buildings with high cooling water tank under three-dimensional earthquake actions,and good results of the simulation of FSI effect can be achieved.
关键词
核岛结构 /
FSI /
简化方法 /
地震反应
{{custom_keyword}} /
Key words
nuclear island building /
FSI /
simplified method /
seismic response
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Housner, G.W., Dynamic pressures on accelerated fluid container [J]. Bulletin of the Seismological Society of American, 1957, 47(1).
[2] Housner, G.W., The dynamic behavior of water tanks [J]. Bulletin of the SeismologicalSociety of American, 1963, 53(2): 381-387.
[3] Haroun, M.A., Housner, G.W., Dynamic characteristic of liquid storage tanks [J]. American Society of Civil Engineers, 1982, 108(5): 783-800.
[4] Haroun, M.A., Vibration studies and tests of liquid storage tanks [J]. Earthquake Engineering and Structure Dynamic, 1983, 11(2): 179-206.
[5] Meserole, J.S., Fortini, A., Sloshing dynamics in a toroidal tank [J]. Journal of Spacecraft & Rockets, 1987, 24(6):523-531.
[6] El Damatty, A.A., Sweedan, A.M.I., Equivalent mechanical analog for dynamic analysis of pure conical tanks [J]. Thin-Walled Structures, 2006, 44(4): 429-440.
[7] 黄江德, 韩博宇. CAP1400屏蔽厂房屋顶PCS水箱流固耦合分析[J]. 核电工程与技术, 2015, (1): 43-45.
Huang Jiangde, Han Boyu. Fluid-structure interaction analysis of PCS tank on CAP1400 shield building roof [J]. Nuclear Power Engineering and Technology, 2015, (1):43-45.
[8] TID-7024. Nuclear reactors and earthquakes, “Dynamic pressure on fluid container” [R]. 1963.
[9] American Society of Civil Engineers. ASCE 4-98 Seismic analysis of safety-related nuclear structures and commentary [M]. New York: American Society of Civil Engineers, 1998.
[10] 林诚格. 非能动安全先进压水堆核电技术[M]. 北京: 原子能出版社, 2012: 904-905.
Lin Chenge. Advanced passive safety PWR nuclear power technology [M]. Beijing: Atom Energy Press, 2012: 904-905.
[11] 夏祖讽. 核电厂抗震设计输入及AP1000核岛隔震课题简介[J]. 中国工程科学, 2013, 15(4): 52-56.
Xia Zufeng. Seismic input of NPP & topic of seismic-isolated research for AP1000 nuclear island [J]. Engineering Science, 2013, 15(4): 52-56.
[12] Westinghouse Electric Co. LLC, AP1000 design control document, Revision 19. Westinghouse Electric Co. LLC, Butler County, Pennsylvania, 2011.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}