本文针对防热瓦的加速度响应以及应变隔离垫(SIP)的动强度问题,提出了热防护系统(TPS)随机振动单自由度动态特性理论模型,并且考虑了SIP的线性刚度和非线性刚度;推导了线性理论模型的解,并且研究了非线性理论模型的迭代求解流程;将有限元分析结果与线性理论解进行了对比,验证了线性理论模型的合理性。对比了非线性理论模型与线性理论模型的解,结果表明:SIP非线性刚度对动态响应具有重要影响,且SIP等效线性刚度系数与激励的类型有关;最后研究了外载荷大小对非线性理论模型的等效线性刚度系数和系统响应的影响规律,结果表明载荷大小的增加会导致系统等效线性刚度的增加,并且响应也随之提高。本文的研究工作为防热瓦的加速度响应、SIP的动强度和TPS动态完整性分析提供了理论依据。
Abstract
A single degree of freedom random dynamic theoretical model for the thermal protection system (TPS) is proposed to study the acceleration response of tile and dynamic strength of the strain isolation pad (SIP). The linear and nonlinear stiffness of SIP is considered. The solutions of linear theoretical model are derived, and the iterative solving procedure of nonlinear theoretical model is studied. The rationality of linear theoretical model is verified by comparing linear theoretical solutions with the results of finite element analysis. The theoretical solutions of nonlinear and linear theoretical models are compared. The dynamic responses and the equivalent linear stiffness coefficient are related to the nonlinear stiffness of SIP and the types of excitations. Finally, the influence laws of the equivalent linear stiffness coefficient and the responses on the external loads are studied. The equivalent linear stiffness and the responses are increases with increasing of the external loads. The investigations in this paper provide a theoretical basis for the researches of the acceleration response of tile, dynamic strength of the SIP and the dynamic integrity of the TPS.
关键词
热防护系统 /
随机振动 /
理论模型 /
动态特性 /
动强度
{{custom_keyword}} /
Key words
thermal protection system /
random vibration /
theoretical model /
dynamic behaviors /
dynamic strength
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Yang J, Liu M. A wall grid scale criterion for hypersonic aerodynamic heating calculation [J]. Acta Astronautica, 2017, 136: 137-143.
[2] Vasil’evskii S A, Gordeev A N, Kolesnikov A F. Local modeling of the aerodynamic heating of the blunt body surface in subsonic high-enthalpy air flow. Theory and experiment on a high-frequency plasmatron [J]. Fluid Dynamics, 2017, 52(1): 158-164.
[3] Persova M G, Soloveichik Y G, Belov V K, et al. Modeling of aerodynamic heat flux and thermoelastic behavior of nose caps of hypersonic vehicles [J]. Acta Astronautica, 2017, 136: 312-331.
[4] Yang Q, Meng S, Xie W, et al. Effective mitigation of the thermal short and expansion mismatch effects of an integrated thermal protection system through topology optimization [J]. Composites Part B Engineering, 2017, 118: 149-157.
[5] Kumar S, Mahulikar S P. Design of thermal protection system for reusable hypersonic vehicle using inverse approach [J]. Journal of Spacecraft & Rockets, 2017, 54(2): 1-11.
[6] Oscar A M, Anurag S, Bhavani V S, et al. Thermal force and moment determination of an integrated thermal protection system [J]. AIAA Journal, 2010, 48(1): 119-128.
[7] Muraca R J, Coe C F, Tulinius J R. Shuttle tile environments and loads [C]. Structural Dynamics and Materials Conference, 1982, 631.
[8] Miserentino R, Pinsonand L D, Leadbetter S A. Some space shuttle tile/strain-isolator-pad sinusoidal vibration tests [R]. NASA TM-81853, 1980.
[9] Cooper P. A, Miserentino R, Sawyer J W, et al. Effect of simulated mission loads on orbiter thermal protection system undensified tiles [J]. Journal of Spacecraft and Rockets, 1984, 21(5): 441-447.
[10] Housner J M, Edighoffer H H, Park K C. Nonlinear dynamic phenomena in the space shuttle thermal protection system [J]. Journal of Spacecraft and Rockets, 1982, 19(3): 269-277.
[11] Edighoffer H. Parametric analytical studies for the nonlinear dynamic response of the tile/pad space shuttle thermal protection system [R]. NAS1-16121, 1981.
[12] Spanos P D. Stochastic linearization in structural dynamics [J]. Applied Mechanics Reviews, 1981, 34(1): 1-8.
[13] Elson J M, Bennett J M. Calculation of the power spectral density from surface profile data [J]. Applied Optics, 1995, 34(1): 201-208.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}