粘接界面脱粘的亚谐波共振识别方法

刘俊毅,肖黎,屈文忠

振动与冲击 ›› 2019, Vol. 38 ›› Issue (21) : 140-147.

PDF(1130 KB)
PDF(1130 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (21) : 140-147.
论文

粘接界面脱粘的亚谐波共振识别方法

  • 刘俊毅,肖黎,屈文忠
作者信息 +

Interfacial de-bonding detection using subharmonic resonance

  •  LIU Junyi    XIAO Li   QU Wenzhong
Author information +
文章历史 +

摘要

粘接技术广泛运用于现代工业中,粘接界面的脱粘会导致结构完整性的破坏,对粘接界面的有效检测具有重要意义。本文提出了一种基于亚谐波共振分析的粘接界面脱粘的识别方法,将粘接界面简化为单自由度模型,采用多尺度方法分析了亚谐波共振现象,定性分析了粘接界面脱粘亚谐波共振的激励条件。以铝板粘接结构为实验对象,利用粘贴在铝梁表面的压电作动单元/传感单元,采用不同频率和电压的激励信号作用在作动片上,传感片接收响应信号,对其进行频谱分析,通过提取响应频谱中的亚谐波成分进行粘接界面脱粘识别。仿真与实验结果表明,亚谐波产生需要特定的激励条件,使用亚谐波检测方法能有效识别粘接界面脱粘。

Abstract

Bonding technology is widely used in modern industry.Interfacial de-bonding causes damage to structural integrity.A method for interfacial de-bonding recognition based on subharmonic resonance analysis was proposed here.A bonded structure was simplified into a single-DOF model, and the multi-scale method was used to analyze its subharmonic resonance phenomena, and qualitatively analyze interfacial de-bonding subharmonic resonance’s exciting conditions.A bonded aluminum plate structure was taken as the test object.Piezoelectric actuator units/sensor units were bonded on the surface of the aluminum beam, and excitation signals with different frequencies and voltages acted on actuators, sensors received the structure’s response signals.The frequency spectral analysis was performed for these response signals, and interfacial de-bonding was recognized through extracting subharmonic components in response spectra.The results of numerical simulation and tests demonstrated that subharmonic components’ appearing needs specific excitation conditions; the proposed subharmonic resonance detection method can be used to effectively recognize interfacial de-bonding.

关键词

界面脱粘 / 损伤识别 / 多尺度法 / 亚谐波

Key words

 Interface debonding / Damage detection / Method of multiple scales / Subharmonic;

引用本文

导出引用
刘俊毅,肖黎,屈文忠. 粘接界面脱粘的亚谐波共振识别方法[J]. 振动与冲击, 2019, 38(21): 140-147
LIU Junyi XIAO Li QU Wenzhong. Interfacial de-bonding detection using subharmonic resonance[J]. Journal of Vibration and Shock, 2019, 38(21): 140-147

参考文献

[1] 滕旭东, 孙健明, 肖齐,等. 固体粘接界面的非线性共振特性研究[J]. 声学技术, 2014, 33(2): 104-107.
Teng Xudong, Sun Jianming, Xiao Qi, et al. Characterization of nonlinear resonance between bonded solid interfaces [J]. Technical Acoustics. 2014, 33(2): 104-107.
[2] 周正干, 刘斯明. 非线性无损检测技术的研究、应用和发展[J]. 机械工程学报, 2011, 47(8):2-11.
Zhou Zhenggan, Liu Siming. Nonlinear ultrasonic techniques used in nondestructive testing: A review [J]. Journal of Mechanical Engineering. 2011, 47(8):2-11.
[3] 安志武, 王小民, 毛捷,等. 粘接界面的非线性弹簧模型及实验验证[J]. 声学学报, 2010, 35(5): 481-487.
An Zhiwu, Wang Xiaomin, Mao Jie, et al. Theoretical and experiment research on nonlinear spring models of a bonding interface [J]. Acta Acustica. 2010, 35(5): 481-487.
[4] 江念, 王召巴, 金永,等. 复合结构界面粘接质量的非线性超声检测[J]. 兵工学报, 2014, 35(3): 398-402.
Jian Nian, Wang Zhaoba, Jin Yong, et al. Measurement of interface bond quality of composite structure using nonlinear ultrasound [J]. Acta Armamentarii. 2014, 35(3):398-402.
[5] Achenbach J D, Parikh O K. Ultrasonic analysis of nonlinear response and strength of adhesive bonds[J]. Journal of Adhesion Science and Technology. 1991, 5(8):601-618.
[6] Yelve N P, Mitra M, Mujumdar P M. Detection of stiffener disbonding in a stiffened aluminium panel using nonlinear Lamb wave[J]. Applied Acoustics, 2015, 89:267-272.
[7] Yelve N P, Mitra M, Mujumdar P M. Higher harmonics induced in lamb wave due to partial debonding of piezoelectric wafer transducers[J]. Ndt & E International, 2014, 63(4): 21-27.
[8] Shui G, Wang Y S, Huang P, et al. Nonlinear ultrasonic evaluation of the fatigue damage of adhesive joint s[J]. Ndt & E International, 2015, 70: 9-15.
[9] Ohara Y, Endo H, Mihara T, et al. Ultrasonic Measurement of Closed Stress Corrosion Crack Depth Using Subharmonic Phased Array[J]. Japanese Journal of Applied Physics. 2009, 48(7): 1-6.
[10] Guédra M, Cornu C, Inserra C. A derivation of the stable cavitation threshold accounting for bubble-bubble interactions[J]. Ultrasonics Sonochemistry, 2017, 38: 168-173.
[11] Singh A K, Chen B Y, Tan V B, et al. Finite element modeling of nonlinear acoustics/ultrasonics for the detection of closed delaminations in composites.[J]. Ultrasonics, 2017, 74: 89-98.
[12] Zhang M, Xiao L, Qu W, et al. Damage detection of fatigue cracks under nonlinear boundary condition using subharmonic resonance[J]. Ultrasonics, 2017, 77: 152-159.
[13] Maruyama T, Saitoh T, Hirose S. Numerical study on sub-harmonic generation due to interior and surface breaking cracks with contact boundary conditions using time-domain boundary element method[J]. International Journal of Solids and Structures. 2017, 126-127: 74-89.
[14] Yan D, Drinkwater B W, Neild S A. Measurement of the ultrasonic nonlinearity of kissing bonds in adhesive joints[J]. NDT & E International. 2009, 42(5): 459-466.
[15] Nayfeh A H, Mook D T. Nonlinear oscillations[M]. John Wiley & Sons, 1979.
[16] Kim G W, Johnson D R, Semperlotti F, et al. Localization of breathing cracks using combination tone nonlinear response[J]. Smart Materials & Structures, 2011, 20(5): 055014.
[17] Li F M, Yao G. 1/3 Subharmonic resonance of a nonlinear composite laminated cylindrical shell in subsonic air flow[J]. Composite Structures, 2013, 100(5): 249-256.
[18] Dittman E, Adams D E. Identification of cubic nonlinearity in disbonded aluminum honeycomb panels using single degree-of-freedom models[J]. Nonlinear Dynamics, 2015, 81(1-2): 1-11.

PDF(1130 KB)

378

Accesses

0

Citation

Detail

段落导航
相关文章

/