[1] SAMANTA B, AL-BALUSHI K R. Artificial neural network based fault diagnostics of rolling element bearings using time-domain features[J]. Mechanical Systems and Signal Processing, 2003,17(2):317-328.
[2] Yang Y, Yu D, Cheng J. A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM[J]. Measurement, 2007,40(9):943-950.
[3] Morsy M E, Achtenová G. Bearing condition monitoring approaches – envelope and Cepstrum analyses[J]. International Journal of Vehicle Noise & Vibration, 2017,13(3/4):350.
[4] Park C, Choi Y, Kim Y. Early fault detection in automotive ball bearings using the minimum variance cepstrum[J]. Mechanical Systems and Signal Processing, 2013,38(2):534-548.
[5] Purushotham V, Narayanan S, Prasad S A N. Multi-fault diagnosis of rolling bearing elements using wavelet analysis and hidden Markov model based fault recognition[J]. NDT & E International, 2005,38(8):654-664.
[6] Kedadouche M, Liu Z, Vu V H. A new approach based on OMA-empirical wavelet transforms for bearing fault diagnosis[J]. Measurement, 2016,90:292-308.
[7] Mishra C, Samantaray A K, Chakraborty G. Rolling element bearing fault diagnosis under slow speed operation using wavelet de-noising[J]. Measurement, 2017,103:77-86.
[8] SG Mallat Z Z. Matching pursuit with time frequency dictionary[J]. IEEE Trans on Signal Processing, 1993,41(12):3397-3415.
[9] SS Chen DL Donoho I J M S. Atomic Decomposition by Basis pursuit[J]. Siam J Sci Comput, 2001,58(1):33-61.
[10] Wolfson D, Hansen P B, Kloch A, et al. All-optical 2R regeneration at 40 Gbit/s in an SOA-based Mach-Zehnder interferometer: Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication. OFC/IOOC '99. Technical Digest, 1999[C].
[11] Min Y J, Pan Z, Cao J, et al. Demonstration of all-optical packet switching routers with optical label swapping and 2R regeneration for scalable optical label switching network applications[J]. Journal of Lightwave Technology, 2003,21(11):2723-2733.
[12] Carena A, Vaughn M D, Gaudino R, et al. OPERA: An Optical Packet Experimental Routing Architecture with Label Swapping Capability[J]. Lightwave Technology Journal of, 1998,16(12):2135-2145.
[13] 孙玉宝, 肖亮, 韦志辉, 等. 基于Gabor感知多成份字典的图像稀疏表示算法研究[J]. 自动化学报, 2008(11):1379-1387.
Sun Yubao, Xiao Liang, Wei Zhihui, et al. parse Representations of Images by a Multi—component Gabor[J]. ACTA AUTOMATICA SINICA, 2008(11):1379-1387.
[14] 尹志科, 解梅, 王建英. 基于稀疏表示的图像去噪[J]. 电子科技大学学报, 2006,35(6):876-878.
Yin Zhike, Xie Mei, Wang Jianying. Image Denoising Based on Its Sparse Decomposition[J]. Journal of University of Electronic Science and Technology of China, 2006,35(6):876-878.
[15] 王林, 蔡改改, 高冠琪, 等. 基于改进MP的稀疏表示快速算法及其滚动轴承故障特征提取应用[J]. 振动与冲击, 2017(03):176-182.
Wang, L., et al., Fast sparse representation algorithm based on improved MP and its applications in fault feature extraction of rolling bearings[J]. Zhendong Yu Chongji/journal of Vibration & Shock, 2017. 36(3):176-182.
[16] 崔玲丽, 莫代一, 张建宇. 基于匹配追踪的快速独立分析方法在轴承复合故障盲源分离中的应用[J]. 北京工业大学学报, 2014(06):814-818.
Cui Ling-li, Mo Dai-yi, Zhang Jian-yu. Fast Independent Component Analysis Technique Based on Match Pursuit and Its Application to Extraction of Bearing Composite Fault[J]. Journal of Beijing University of Technology, 2014(06):814-818.
[17] 崔玲丽, 莫代一, 邬娜. 并联基追踪稀疏表示在齿轮箱弱故障诊断中的应用[J]. 仪器仪表学报, 2014(11):2633-2640.
Cui Ling-li, Mo Dai-yi, Yu Na.. Application of sparse signal decomposition using dual-BP in gear -box weak fault diagosis[J]. Chinese Journal of Scientific Instrument, 2014(11):2633-2640.
[18] Tang H, Chen J, Dong G. Signal complexity analysis for fault diagnosis of rolling element bearings based on matching pursuit[J]. Journal of Vibration & Control, 2012,18(5):671-683.
[19] Wang C, Gan M, Zhu C A. Fault feature extraction of rolling element bearings based on wavelet packet transform and sparse representation theory[J]. Journal of Intelligent Manufacturing, 2015(11):1-15.
[20] Tang H, Chen J, Dong G. Sparse representation based latent components analysis for machinery weak fault detection[J]. Mechanical Systems & Signal Processing, 2014,46(2):373-388.
[21] HO D, RANDALL R B. OPTIMISATION OF BEARING DIAGNOSTIC TECHNIQUES USING SIMULATED AND ACTUAL BEARING FAULT SIGNALS[J]. Mechanical Systems and Signal Processing, 2000,14(5):763-788.
[22] Lee H, Battle A, Raina R, et al. Efficient sparse coding algorithms. NIPS[J]. Proc of Nips, 2007,19:801-808.
[23] Chang S G, Yu B, Vetterli M. Adaptive wavelet thresholding for image denoising and compression[J]. IEEE Transactions on Image Processing, 2000,9(9):1532.
[24] Donoho D L, Elad M, Temlyakov V N. Stable recovery of sparse overcomplete representations in the presence of noise[J]. IEEE Transactions on Information Theory, 2005,52(1):6-18.
[25] Mcfadden P D, Smith J D. Model for the vibration produced by a single point defect in a rolling element bearing[J]. Journal of Sound & Vibration, 1984,96(1):69-82.
[26] Mcfadden P D, Smith J D. The vibration produced by multiple point defects in a rolling element bearing[J]. Journal of Sound & Vibration, 1985,98(2):263-273.