基于衰减余弦字典和稀疏特征符号搜索算法的轴承微弱故障特征提取

周浩轩,刘义民,刘韬

振动与冲击 ›› 2019, Vol. 38 ›› Issue (21) : 164-171.

PDF(1102 KB)
PDF(1102 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (21) : 164-171.
论文

基于衰减余弦字典和稀疏特征符号搜索算法的轴承微弱故障特征提取

  • 周浩轩,刘义民,刘韬
作者信息 +

Bearing weak fault feature extraction based on attenuated cosine dictionary and sparse feature sign search algorithm

  • ZHOU Haoxuan, LIU Yimin, LIU Tao
Author information +
文章历史 +

摘要

本文通过分析轴承内外圈故障时域波形特征,结合其早期微弱故障特点,提出了一种与轴承故障波形高度匹配的衰减余弦过完备字典,同时与稀疏表示基追踪方法的特征符号搜索算法相结合的新型算法(ACFS),实现了强噪声干扰下轴承微弱故障特征的提取。通过分析原始信号频谱与理论故障特征,确定了张成原子库的参数,并结合特征符号搜索算法对不同信噪比轴承内圈仿真信号和轴承全寿命数据中的早期微弱故障信号进行了分析。对比普通包络解调方法与基于Symlet8小波包字典的普通BPDN结果表明,该方法可以在极早期实际轴承故障信号中高效、准确地提取出故障特征频率。对于噪声具有极好的冗余度与鲁棒性。

Abstract

Here, through analyzing a bearing’s inner and outer ring faults’ time domain features and combining with its early weak fault features, a new algorithm was proposed using an attenuated cosine over-complete dictionary highly matching bearing fault waveforms, and combined with the sparse representation basis pursuing method’s sign search algorithm.It realized bearing weak fault feature extraction under interference of strong noise.The original signal’s spectrum and theoretical fault features were analyzed to determine parameters of the opened atomic library.Combining the atomic library and the feature sign search algorithm, early weak fault signals in bearing inner ring simulated signals with different signal to noise ratios and bearing whole life data were analyzed.Results of the common envelope demodulation method compared with those of the ordinary BPDN based on Symlet8 wavelet packet dictionary showed that the new algorithm can be used to effectively and correctly extract fault feature frequencies in very early actual bearing fault signals; it has excellent redundancy and robustness to noise.

关键词

稀疏表示 / 基追踪 / 衰减余弦字典 / 轴承早期故障 / 特征符号搜索

Key words

 Sparse representation / Basis pursuing / Attenuated cosine dictionary / Early bearing failure / Feature Sign Search

引用本文

导出引用
周浩轩,刘义民,刘韬. 基于衰减余弦字典和稀疏特征符号搜索算法的轴承微弱故障特征提取[J]. 振动与冲击, 2019, 38(21): 164-171
ZHOU Haoxuan, LIU Yimin, LIU Tao. Bearing weak fault feature extraction based on attenuated cosine dictionary and sparse feature sign search algorithm[J]. Journal of Vibration and Shock, 2019, 38(21): 164-171

参考文献

[1] SAMANTA B, AL-BALUSHI K R. Artificial neural network based fault diagnostics of rolling element bearings using time-domain features[J]. Mechanical Systems and Signal Processing, 2003,17(2):317-328.
 [2] Yang Y, Yu D, Cheng J. A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM[J]. Measurement, 2007,40(9):943-950.
 [3] Morsy M E, Achtenová G. Bearing condition monitoring approaches – envelope and Cepstrum analyses[J]. International Journal of Vehicle Noise & Vibration, 2017,13(3/4):350.
 [4] Park C, Choi Y, Kim Y. Early fault detection in automotive ball bearings using the minimum variance cepstrum[J]. Mechanical Systems and Signal Processing, 2013,38(2):534-548.
 [5] Purushotham V, Narayanan S, Prasad S A N. Multi-fault diagnosis of rolling bearing elements using wavelet analysis and hidden Markov model based fault recognition[J]. NDT & E International, 2005,38(8):654-664.
 [6] Kedadouche M, Liu Z, Vu V H. A new approach based on OMA-empirical wavelet transforms for bearing fault diagnosis[J]. Measurement, 2016,90:292-308.
 [7] Mishra C, Samantaray A K, Chakraborty G. Rolling element bearing fault diagnosis under slow speed operation using wavelet de-noising[J]. Measurement, 2017,103:77-86.
 [8] SG Mallat Z Z. Matching pursuit with time frequency dictionary[J]. IEEE Trans on Signal Processing, 1993,41(12):3397-3415.
 [9] SS Chen DL Donoho I J M S. Atomic Decomposition by Basis pursuit[J]. Siam J Sci Comput, 2001,58(1):33-61.
[10] Wolfson D, Hansen P B, Kloch A, et al. All-optical 2R regeneration at 40 Gbit/s in an SOA-based Mach-Zehnder interferometer: Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication. OFC/IOOC '99. Technical Digest, 1999[C].
[11] Min Y J, Pan Z, Cao J, et al. Demonstration of all-optical packet switching routers with optical label swapping and 2R regeneration for scalable optical label switching network applications[J]. Journal of Lightwave Technology, 2003,21(11):2723-2733.
[12] Carena A, Vaughn M D, Gaudino R, et al. OPERA: An Optical Packet Experimental Routing Architecture with Label Swapping Capability[J]. Lightwave Technology Journal of, 1998,16(12):2135-2145.
[13] 孙玉宝, 肖亮, 韦志辉, 等. 基于Gabor感知多成份字典的图像稀疏表示算法研究[J]. 自动化学报, 2008(11):1379-1387.
         Sun Yubao, Xiao Liang, Wei Zhihui, et al. parse Representations of Images by a Multi—component Gabor[J]. ACTA AUTOMATICA SINICA, 2008(11):1379-1387.
[14] 尹志科, 解梅, 王建英. 基于稀疏表示的图像去噪[J]. 电子科技大学学报, 2006,35(6):876-878.
         Yin Zhike, Xie Mei, Wang Jianying. Image Denoising Based on Its Sparse Decomposition[J]. Journal of University of Electronic Science and Technology of China, 2006,35(6):876-878.
[15] 王林, 蔡改改, 高冠琪, 等. 基于改进MP的稀疏表示快速算法及其滚动轴承故障特征提取应用[J]. 振动与冲击, 2017(03):176-182.
Wang, L., et al., Fast sparse representation algorithm based on improved MP and its applications in fault feature extraction of rolling bearings[J]. Zhendong Yu Chongji/journal of Vibration & Shock, 2017. 36(3):176-182.
[16] 崔玲丽, 莫代一, 张建宇. 基于匹配追踪的快速独立分析方法在轴承复合故障盲源分离中的应用[J]. 北京工业大学学报, 2014(06):814-818.
         Cui Ling-li, Mo Dai-yi, Zhang Jian-yu. Fast Independent Component Analysis Technique Based on Match Pursuit and Its Application to Extraction of Bearing Composite Fault[J]. Journal of Beijing University of Technology, 2014(06):814-818.
[17] 崔玲丽, 莫代一, 邬娜. 并联基追踪稀疏表示在齿轮箱弱故障诊断中的应用[J]. 仪器仪表学报, 2014(11):2633-2640.
         Cui Ling-li, Mo Dai-yi, Yu Na.. Application of sparse signal decomposition using dual-BP in gear -box weak fault diagosis[J]. Chinese Journal of Scientific Instrument, 2014(11):2633-2640.
[18] Tang H, Chen J, Dong G. Signal complexity analysis for fault diagnosis of rolling element bearings based on matching pursuit[J]. Journal of Vibration & Control, 2012,18(5):671-683.
[19] Wang C, Gan M, Zhu C A. Fault feature extraction of rolling element bearings based on wavelet packet transform and sparse representation theory[J]. Journal of Intelligent Manufacturing, 2015(11):1-15.
[20] Tang H, Chen J, Dong G. Sparse representation based latent components analysis for machinery weak fault detection[J]. Mechanical Systems & Signal Processing, 2014,46(2):373-388.
[21] HO D, RANDALL R B. OPTIMISATION OF BEARING DIAGNOSTIC TECHNIQUES USING SIMULATED AND ACTUAL BEARING FAULT SIGNALS[J]. Mechanical Systems and Signal Processing, 2000,14(5):763-788.
[22] Lee H, Battle A, Raina R, et al. Efficient sparse coding algorithms. NIPS[J]. Proc of Nips, 2007,19:801-808.
[23] Chang S G, Yu B, Vetterli M. Adaptive wavelet thresholding for image denoising and compression[J]. IEEE Transactions on Image Processing, 2000,9(9):1532.
[24] Donoho D L, Elad M, Temlyakov V N. Stable recovery of sparse overcomplete representations in the presence of noise[J]. IEEE Transactions on Information Theory, 2005,52(1):6-18.
[25] Mcfadden P D, Smith J D. Model for the vibration produced by a single point defect in a rolling element bearing[J]. Journal of Sound & Vibration, 1984,96(1):69-82.
[26] Mcfadden P D, Smith J D. The vibration produced by multiple point defects in a rolling element bearing[J]. Journal of Sound & Vibration, 1985,98(2):263-273.
 

PDF(1102 KB)

Accesses

Citation

Detail

段落导航
相关文章

/