复杂声边界约束下水中圆柱壳声振特性研究

翁凌霄1 缪宇跃2 李天匀3

振动与冲击 ›› 2019, Vol. 38 ›› Issue (21) : 186-193.

PDF(929 KB)
PDF(929 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (21) : 186-193.
论文

复杂声边界约束下水中圆柱壳声振特性研究

  • 翁凌霄1 缪宇跃2 李天匀3
作者信息 +

Acoustic and vibration characteristics of underwater cylindrical shell with complex acoustic boundaries

  • WENG Lingxiao1 MIAO Yuyue2 LI Tianyun3
Author information +
文章历史 +

摘要

解析地研究了复杂声边界约束下水中无限长圆柱壳的振动和声辐射问题。该圆柱壳受到轴向均匀线激励力作用,并处于自由液面(或水平水底)和垂直刚性壁面组成的复杂声边界构成的四分之一无限流域中。根据镜像原理和Graf加法定理推导了无限长圆柱壳声振耦合方程,讨论了复杂声边界对圆柱壳振动和声辐射的影响。研究发现两种声边界对圆柱壳振动特性和表面辐射声功率有不同的影响。当圆柱壳离边界足够远时其振动特性和表面辐射声功率几乎不受影响,而其辐射声场仍会受到圆柱壳位置变化的影响,尤其当圆柱壳靠近流域边界时会产生显著的辐射噪声,不利于隐蔽。

Abstract

Vibration and acoustic radiation of an infinite long underwater cylindrical shell with complex acoustic boundary conditions were studied analytically.The cylindrical shell was excited by an axial uniform line load and located in a quarter-infinite flow domain with complex acoustic boundary conditions composed of a free liquid surface or horizontal water bottom and a vertical rigid wall one.Based on the mirror image principle and Graf’s addition theorem, the sound-vibration coupled dynamic equation of the infinite cylindrical shell was derived to discuss effects of complex acoustic boundary conditions on the shell’s vibration and acoustic radiation.It was shown that free liquid surface and rigid wall one have different effects on the shell’s vibration characteristics and surface radiation acoustic power, respectively; when the shell is enough far away from the boundary, its vibration characteristics and surface radiation acoustic power almost are not affected, while its radiation sound field is still affected by its position variation, especially, when the shell is closed to the flow domain boundary,significant radiation noise is produced, it is not conducive to concealment.

关键词

圆柱壳 / 自由液面 / 刚性壁面 / 振动 / 声辐射 / 镜像原理 / Graf加法定理

Key words

cylindrical shell / free surface / rigid surface / vibration / acoustic radiation / image method / Graf’s addition theorem

引用本文

导出引用
翁凌霄1 缪宇跃2 李天匀3. 复杂声边界约束下水中圆柱壳声振特性研究[J]. 振动与冲击, 2019, 38(21): 186-193
WENG Lingxiao1 MIAO Yuyue2 LI Tianyun3. Acoustic and vibration characteristics of underwater cylindrical shell with complex acoustic boundaries[J]. Journal of Vibration and Shock, 2019, 38(21): 186-193

参考文献

[1] ZHANG X M, LIU G R, LAM K Y, Coupled vibration analysis of fluid-filled cylindrical shells[J]. Applied Acoustics, 2001, 62(3): 229-243.
[2] LIU Zhizhong, LI Tianyun, ZHU Xiang, ZHANG Junjie, The effect of Hydrostatic pressure fields on the dispersion characteristics of fluid-shell coupled system[J]. Journal of Marine Science and Application, 2010, 9(2): 129-136.
[3] YE Wenbing, The vibro-acoustic characteristics of the cylindrical shell partially submerged in the fluid[J].  Applied Mechanics and Materials, 2012, 170(3):  2303-2311.
[4] Hasheminejad S M, Azarpeyvand M. Modal vibrations of an infinite cylinder in an acoustic halfspace. International journal of engineering science[J]. 2003, 41(19): 2253-2271.
[5] Hasheminejad S M, Azarpeyvand M. Modal vibrations of a cylindrical radiator over an impedance plane. Journal of sound and vibration[J]. 2004, 278(3): 461-477.
[6] Li H L, Wu C J, Huang X Q. Parametric study on sound radiation from an infinite fluid-filled/semi-submerged cylindrical shell[J]. Applied Acoustics, 2003, 64(5): 495-509.
[7] Salaün P. Effect of a free surface on the far‐field pressure radiated by a point‐excited cylindrical shell[J]. The Journal of the Acoustical Society of America, 1991, 90(4): 2173-2181.
[8] T. Y. Li, Y. Y. Miao, W. B. Ye, X. Zhu, X. M. Zhu, Far-field sound radiation of a submerged cylindrical shell at finite depth from the free surface[J]. The Journal of the Acoustical Society of America 136(3) (2014) 1054-1064.
[9] Chen L, Liang X, Yi H. Vibro-acoustic characteristics of cylindrical shells with complex acoustic boundary conditions[J]. Ocean Engineering, 2016, 126: 12-21.
[10] 王威, 陈炉云. 含复杂声边界的圆柱壳结构声振特性研究[J]. 振动工程学报, 2016, 29(6):1034-1040.
WANG Wei, CHEN Luyun. Vibro-acoustic characteristics of cylindrical shells with complex acoustic boundary conditions[J]. Journal of Vibration Engineering, 2016, 29(6): 1034-1040.
[11] Guo W, Li T, Zhu X, et al. Vibration and acoustic radiation of a finite cylindrical shell submerged at finite depth from the free surface[J]. Journal of Sound Vibration, 2017, 393:338-352.
[12] 邹元杰, 赵德有, 黎胜. 自由液面和刚性壁面对结构振动声辐射的影响[J]. 声学学报, 2005, 30(1): 89-96.
ZOU Yuanjie, ZHAO Deyou, LI Sheng. Impact of soft surface and hard plane on structural vibration and acoustic radiation[J]. Acta Acustica, 2005, (1):89-96.
[13] Ergin A, Price W G. Dynamic characteristics of a submerged, flexible cylinder vibrating in finite water depths[J]. Journal of ship research, 1992, 36(2): 154-167.
[14] Ergin A, Temarel P. Free vibration of a partially liquid-filled and submerged, horizontal cylindrical shell[J]. Journal of Sound and vibration, 2002, 254(5): 951-965.
[15] Brunner D, Junge M, Cabos C, et al. Vibroacoustic Simulation of Partly Immersed Bodies by a Coupled Fast BE‐FE Approach[J]. Journal of the Acoustical Society of America, 2008, 123(5):3418-3418.
[16] Zhou Q, Joseph P F. A numerical method for the calculation of dynamic response and acoustic radiation from an underwater structure[J]. Journal of Sound & Vibration, 2005, 283(s 3–5):853-873.
[17] 缪宇跃, 李天匀, 朱翔, 等. 浅海中圆柱壳的声辐射特性分析[J]. 哈尔滨工程大学学报, 2017, 38(5): 719-726
MIAO Yuyue, LI Tianyun, ZHU Xiang, et al. Research on the acoustical radiation characteristics of cylindrical shells in a shallow sea[J]. Journal of Harbin Engineering University, 2017, 38(5): 719-726.
[18] W. M. Lee, J. T. Chen, Scattering of flexural wave in a thin plate with multiple circular holes by using the multipole Trefftz method[J]. International Journal of Solids and Structures 47(9) (2010) 1118-1129.
[19] Chen L, Zhang Y. Acoustic radiation analysis based on essential solution of Green’s function[J]. Journal of Shanghai Jiaotong University (Science), 2013, 18: 409-417.
[20] Chen L, Liang X, Yi H. Acoustic radiation analysis for a control domain based on Green's function[J]. Applied Mathematical Modelling, 2015, 40(4): 2514-2528.

PDF(929 KB)

Accesses

Citation

Detail

段落导航
相关文章

/