枪虾利用空化气泡破裂产生的压力脉冲进行捕猎,其夹螯产生空化射流具有高能聚焦的特点。研究夹螯结构对射流的聚焦机理和影响规律,对于探索空化效应、研发仿生空化装置等具有重要的意义。文章利用CT扫描技术和高速摄影技术,通过研究夹螯的结构特性、运动特性,揭示了枪虾夹螯的运动规律;结合CFD仿真模拟空化射流的产生过程和流场状态,阐述夹螯结构对射流的聚焦作用机理;对不同结构尺寸的囊腔凹槽进行仿真,分析了凹槽大小对射流的影响。结果表明,枪虾夹螯的凹槽结构会对射流产生聚焦效应,且当凹槽尺寸约为0.15mm时具有最优的射流聚焦效果。
Abstract
Snapping shrimps use pressure pulse generated by cavitation bubble rupture to hunt foods, cavitation jet produced by their claws has high energy focusing feature.Studying snapping shrimp claw structure’s jet focusing mechanism and affection laws is very important for exploring cavitation effect and developing bionic cavitation devices.Here, CT scanning technique and high-speed photography one were used to study structure and motion characteristics of a claw, and reveal its motion law; CFD simulation to imitate cavitation jet generation process and flow field state was used to present claw structure’s jet focusing mechanism.Grooves with different sizes were used to simulate influences of groove structure on jet.The results showed that groove structure of snapping shrimp claw can produce jet focusing action; when its size is about 0.15 mm, it has the optimal jet focusing effect.
关键词
枪虾 /
空化射流 /
射流聚焦 /
机理研究
{{custom_keyword}} /
Key words
snapping shrimp /
cavitation jet /
jet focusing /
mechanism research
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Versluis M, Schimitz B, Von der Heydt A, Lohse D. How snapping shrimp snap: through cavitating bubbles[J]. Science, 2000,289:2114–2117.
[2] Herberholz J, Schmitz B. Flow visualization and highspeed video analysis of water jets in the snapping shrimp(Alpheus heterochaelis)[J]. J Comp Physiol A, 1999, 185:41–49.
[3] Schmiz B, Herberholz J. Snapping movements and laser doppler anemometry analysis of water jets in thesnapping shrimp Alpheus heterochaelis[C]. In: Proceedings ofthe 26th Gottingen Neurobiol. Conf., 1998, 2: 241.
[4] Schmiz B, Herberholz J. Snapping behavior in intraspecific agonistic encounters in the sanpping shrimp(Alpheus heterochaelis)[J]. J Biosci, 1998,23:623–632.
[5] Lohse D, Schmitz B, Versluis M. Snapping shrimp make flashing bubbles[J]. Nature, 2001,413:477–478.
[6] Hess D, Brücker C, Hegner F, Balmert A, Bleckmann H. Vortex Formation with a Snapping Shrimp Claw[J]. PLOS ONE, 2013, 8(11): e77120. doi: 10.1371/ journal. pone. 0077120.
[7] Koukouvinis P, Bruecker C, Gavaises M.Unveiling the physical mechanismbehind pistol shrimp cavitation[J]. Scientific Reports, 2017,7(13994):1–12.
[8] 王玉川,高传昌,谭磊,曹树良.轴对称腔体内淹没射流空化的滞后效应[J].振动与冲击,2015,34(18):118-122.
Wang Y C, Gao C C, Tan L, Cao S L.Hysteresis properties of submerged jet cavitation in axis-symmetrical cavity[J].Journal of Vibration and Shock, 2015,34(18):118-122.
[9] 李子丰.空化射流形成的判据和冲蚀机理[J].工程力学,2007,24(3):185-188.
Li Z F.Criterion and erosion mechanism of cavitation jet formation[J]. ENGINEERING MECHANICS, 2007,24(3):185-188.
[10] 魏海鹏, 符松. 不同多相流模型在航行体出水流场数值模拟中的应用[J].振动与冲击, 2015,34(4):48-52.
Wei H P, Fu S.Multiphase models for flow field numerical simulation of a vehicle rising from water[J]. Journal of Vibration and Shock, 2015,34(4):48-52.
[11] 王福军.计算流体动力学分析[M]. 北京:清华大学出版社,2004.
Wang F J.Computational Fluid Dynamics Analysis[M]. Beijing:Tsinghua University Press,2004.
[12] Amini S, Tadayon M, Chua I,Miserez A. Multi-scale structural design and biomechanics of the pistol shrimpsnapper claw[J].ActaBiomaterialia,2018, 73: 449–457.
[13] 廖振方, 唐川林, 张凤华.自激振荡脉冲射流喷嘴的试验研究[J].重庆大学学报(自然科学版),2002,25(2):28-32.
Liao Z F, Tang C L, Zhang F H.Experimental study on self-excited oscillation pulse jet nozzle[J].Journal of Chongqing University (Natural Science Edition),2002,25(2):28-32.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}