为研究机体设置阻尼器后非比例阻尼对滑橇式直升机机体动力学特性的影响,建立了支持在滑橇式起落架上的直升机机体有限元模型。给出了结合有限元法的直升机机体固有频率和当量至桨毂中心的质量、刚度及阻尼的计算方法,当量后的比例阻尼系统与实际非比例阻尼系统的复特征值相同。分析了非比例阻尼对机体模态频率及阻尼的影响:由于非比例阻尼的影响,使得模态频率随阻尼器阻尼的增加而增加,而在阻尼器阻尼较大时,模态阻尼可能减小,不利于直升机地面共振动稳定性;计入阻尼器阻尼关于速度的非线性后,机体模态频率随阻尼器速度的增加先增加后减小,模态阻尼不是按照阻尼器阻尼随其速度的变化趋势而变化,而可能出现两次增加再减小的过程,在阻尼器定压活门开启前后各形成一个峰值。
Abstract
A finite element (FE) model of helicopter fuselage supported by skid landing gear was established to study effects of non-proportional damping on fuselage dynamic features of a skid helicopter with damper.The FE calculation methods for helicopter fuselage natural frequencies and equivalent mass, stiffness, and damping from fuselage to rotor center were derived.Complex eigenvalues of the equivalent proportional damping system and the actual non-proportional damping system were the same.The effects of non-proportional damping on fuselage modal frequency and damping were analyzed.It was shown that due to non-proportional damping, modal frequencies increase with increase in damper’s damping; when damper’s damping is larger, modal damping may be decreased to be unfavorable to stability of helicopter ground resonance; after considering the nonlinear relation between damper’s damping and its velocity, fuselage modal frequencies increase firstly and then decrease with increase in damper velocity; modal damping doesn’t change according to variation trend of damper’s damping with variation of damper velocity, it may have a process with 2 increases and one decrease; modal damping has 2 peak values, one appears before damper constant pressure valve opening and one does after.
关键词
直升机 /
滑橇起落架 /
液压阻尼器 /
地面共振 /
固有频率 /
模态阻尼 /
非比例阻尼
{{custom_keyword}} /
Key words
helicopter /
skid landing gear /
hydraulic damper /
ground resonance /
natural frequency /
modal damping /
non-proportional damping
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] WALDEN R B, COMMON R, HOEFFERLE H. An overview of the RQ-8A fire scout VTUAV ground resonance stability validation program[C]//Proceedings of the American Helicopter Society 62th Annual Forum. Phoenix: American Helicopter Society, 2006: 1-8.
[2] MINDERHOUD P. Development of bell helicopter’s model 429 sleigh type skid landing gear[C]//Proceedings of the American Helicopter Society 64th Annual Forum. Montreal: American Helicopter Society, 2008: 2536-2544.
[3] 于仁业, 王佳峰, 赵泽乾. 滑橇起落架与机体连接方式对地面共振的影响分析[C]//第三十二届全国直升机年会论文集. 绵阳: 中国航空学会直升机专业分会, 2016: 3.21-3.24.
YU Renye, WANG Jiafeng, ZHAO Zeqian. Skid landing gear and airframe connect mode influence ground resonance analysis[C]//Proceedings of the 32th Helicopter Annual Forum. Mianyang: Helicopter Branch of Chinese Society of Aeronautics and Astronautics, 2016: 3.21-3.24.
[4] NARRAMORE J C, YUCE M. Bell 429 main rotor aerodynamic and dynamic development[C]//Proceedings of the American Helicopter Society 66th Annual Forum. Phoenix: American Helicopter Society, 2010: 1-17.
[5] 程金送. 滑橇式起落架装置直升机地面共振初步分析[R]. GF-A0024308, 景德镇: 中国直升机设计研究所, 1998: 1-10.
CHENG Jinsong. The primary analysis of ground resonance for skid landing gear helicopter[R]. GF-A0024308, Jingdezhen: China Helicopter Research and Development Institute, 1998: 1-10.
[6] SHARF I, MONTERRBIO L. Influence of landing gear design on helicopter ground resonance [J]. AIAA Journal, 1999: 452-462.
[7] 徐敏, 张晓谷. 一种分析滑橇式起落架直升机地面共振的方法[J]. 南京航空航天大学学报, 2004, 36(4): 533-538.
XU Min, ZHANG Xiaogu. Analytical method of ground resonance for helicopters with skid landing gears[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2004, 36(4): 533-538 .
[8] 方远乔, 陈安宁, 董卫平. 振动模态分析技术[M]. 北京: 国防工业出版社, 1993: 24-31.
FANG Yuanqiao, CHEN Anning, DONG Weiping. Vibration modal analysis technology[M]. Beijing: National Defense Industry Press, 1993: 24-31.
[9] 胡海岩. 机械振动基础[M]. 北京: 北京航空航天大学出版社, 2005: 76-77.
HU Haiyan. Fundamentals of mechanical vibration[M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2005: 20-21.
[10] 邹经湘, 李强. 在非比例阻尼情况下识别模态参数[J]. 哈尔滨工业大学学报, 1985: 91-98.
ZOU Jingxiang, LI Qiang. Identifying modal parameters in case of non-proportional damping[J]. Journal of Harbin Institute of Technology, 1985: 91-98.
[11] VELETSOS A S, VENTURA CARLOS E. Modal analysis of non-classically damped linear systems[J]. Earthquake Engineering and Structural Dynamics, 1986, 14: 217-243.
[12] 吴靖, 胡国才. 带定压活门的液压阻尼器力学性能研究[J]. 华中科技大学学报: 自然科学版, 2017,45(2):44-49.
WU Jin, HU Guocai. On mechanical features of hydraulic damper with pressure relieve valve[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2017, 45(2): 44-49.
[13] 吴靖, 胡国才, 刘湘一. 带定压活门的液压阻尼器建模因素分析[J]. 工程科学与技术, 2017, 49(6): 184-188.
WU Jin, HU Guocai, LIU Xiangyi. Analysis on modeling factors of hydraulic damper with pressure relief valve[J]. Advanced Engineering Sciences, 2017, 49(6): 184-188.
[14] 张晓谷. 直升机动力学设计[M]. 北京: 航空工业出版社, 1995: 87-94.
ZHANG Xiaogu. Helicopter dynamics design[M]. Beijing: Aviation Industry Press, 1995: 87-94.
[15] 胡国才, 魏钢, 吴靖. 滑跑速度对直升机侧向模态频率的影响 [J]. 南京航空航天大学学报, 2016, 48(4): 516-521.
HU Guocai, WEI Gang, WU Jing. Effect of running velocity on helicopter lateral mode frequency[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2016, 48(4): 516-521.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}