基于甲虫鞘翅的客车八边形仿生多胞薄壁管耐撞性研究

白芳华1,张林伟2,白中浩2,覃祯员1,张永春1,王若璜1,胡伟1

振动与冲击 ›› 2019, Vol. 38 ›› Issue (21) : 24-30.

PDF(1698 KB)
PDF(1698 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (21) : 24-30.
论文

基于甲虫鞘翅的客车八边形仿生多胞薄壁管耐撞性研究

  • 白芳华1,张林伟2,白中浩2,覃祯员1,张永春1,王若璜1,胡伟1
作者信息 +

Crashworthiness of coach’s octagonal bionic multi-cell thin-walled tubes based on beetle elytra

  • BAI Fanghua1, ZHANG Linwei2, BAI Zhonghao2, QIN Zhenyuan1, ZHANG Yongchun1, WANG Ruohuang1, HU Wei1
Author information +
文章历史 +

摘要

为了提升客车前部吸能结构的耐撞性,通过模拟甲虫鞘翅的微观结构,设计了一系列新型客车八边形仿生多胞薄壁管,并对其在轴向加载下的吸能特性进行了研究。首先,建立了八边形多胞薄壁管的有限元模型,然后,采用简化超折叠单元理论验证了有限元模型的有效性。最后,通过有限元仿真对比研究了八边形仿生多胞薄壁管与传统多胞薄壁管的耐撞性。结果表明,八边形仿生多胞薄壁管具有优异的耐撞性表现。

Abstract

In order to improve the crashworthiness of a coach’s front energy-absorbing structure, a series of coach’s novel octagonal bionic multi-cell thin-walled tubes were designed through imitating microstructure of beetle elytra, and their energy absorption characteristics under axial loading were studied.Firstly, the finite element model for an octagonal multi-cell thin-walled tube was established.Then, the validity of the finite element model was verified using the simplified hyper folding element theory.Finally, the crashworthiness of an octagonal bionic multi-cell thin-walled tube and that of a traditional multi-cell thin-walled one were studied contrastively with finite element simulation.The results showed that an octagonal bionic multi-cell thin-walled tube has an excellent crashworthiness.
 

关键词

八边形仿生多胞管 / 甲虫鞘翅 / 理论验证 / 耐撞性

Key words

octagonal bionic multi-cell tubes / beetle forewings / theoretical validation / crashworthiness

引用本文

导出引用
白芳华1,张林伟2,白中浩2,覃祯员1,张永春1,王若璜1,胡伟1. 基于甲虫鞘翅的客车八边形仿生多胞薄壁管耐撞性研究[J]. 振动与冲击, 2019, 38(21): 24-30
BAI Fanghua1, ZHANG Linwei2, BAI Zhonghao2, QIN Zhenyuan1, ZHANG Yongchun1, WANG Ruohuang1, HU Wei1. Crashworthiness of coach’s octagonal bionic multi-cell thin-walled tubes based on beetle elytra[J]. Journal of Vibration and Shock, 2019, 38(21): 24-30

参考文献

[1] 王欣, 颜长征, 覃祯员, 等. 客车正面碰撞标准研究[J]. 交通标准化, 2011(8): 6-10.
WANG Xin, YAN Chang-zheng, QIN Zhen-yuan, et al. Study on Bus Frontal Crash Standards [J]. Transport Standardization, 2011(8): 6-10.
[2] 谭丽辉, 谭洪武, 毛志强, 等. 具有不同诱导槽结构的薄壁圆管抗撞性优化[J]. 振动与冲击, 2014, 33(8): 16-21.
TAN Li-hui, TAN Hong-wu, MAO Zhi-qiang, et al. Crashworthiness design optimization of thin-walled cylinders with different inducing grooves [J]. Journal of Vibration and Shock, 2014, 33(8): 16-21.
[3] 张秧聪, 许平, 彭勇, 等. 高速列车前端多胞吸能结构的耐撞性优化[J]. 振动与冲击, 2017, 36(12): 31-36.
ZHANG Yang-cong, XU Ping, PENG Yong, et al. Crashworthiness optimization of high-speed train front multi-cell energy-absorbing structures [J]. Journal of Vibration and Shock, 2017, 36(12): 31-36.
[4] 张宗华, 刘书田. 多边形薄壁管动态轴向冲击的耐撞性研究[C]// 2007年中国汽车工程学会年会论文集. 北京: 机械工业出版, 2007. 437-443.
ZHANG Zong-huacLIU Shu-tian. Crashworthiness of dynamical axial crushing of polygonal thin-walled tubes [C]// 2007 SAE-China Congress Proceedings. Beijing: China Machine Press, 2007. 437-443.
[5] Zhang X, Cheng G D, Zhang H. Theoretical prediction and numerical simulation of multi-cell square thin-walled structures [J]. Thin-Walled Structures, 2006, 44(11): 1185-1191.
[6] Nia A A, Parsapour M. Comparative analysis of energy absorption capacity of simple and multi-cell thin-walled tubes with triangular, square, hexagonal and octagonal sections [J]. Thin-Walled Structures, 2014, 74: 155-165.
[7] Chen J X, Ni Q Q, Xu Y L, et al. Lightweight composite structures in the forewings of beetles [J]. Composite Structures, 2007, 79(3): 331-337.
[8] Chen J X, Gu C L, Guo S J, et al. Integrated honeycomb technology motivated by the structure of beetle forewings [J]. Materials Science and Engineering: C, 2012, 32(7): 1813-1817.
[9] Zhang L W, Bai Z H, Bai F H. Crashworthiness design for bio-inspired multi-cell tubes with quadrilateral, hexagonal and octagonal sections [J]. Thin-Walled Structures, 2018, 122: 42-51.
[10] Nia A A, Chahardoli S. Optimizing the layout of nested three-tube structures in quasi-static axial collapse [J]. Thin-Walled Structures, 2016, 107: 169-181.
[11] Santosa S P, Wierzbicki T, Hanssen A G, et al. Experimental and numerical studies of foam-filled sections [J]. International Journal of Impact Engineering, 2000, 24(5): 509-534.
[12] Sun G Y, Pang T, Fang J G, et al. Parameterization of criss-cross configurations for multiobjective crashworthiness optimization [J]. International Journal of Mechanical Sciences, 2017, 124: 145-157.
[13] Xiang Y F, Yu T X, Yang L M. Comparative analysis of energy absorption capacity of polygonal tubes, multi-cell tubes and honeycombs by utilizing key performance indicators [J]. Materials & Design, 2016, 89: 689-696.
[14] Chen W, Wierzbicki T. Relative merits of single-cell, multi-cell and foam-filled thin-walled structures in energy absorption [J]. Thin-Walled Structures, 2001, 39(4): 287-306.
[15] Wierzbicki T, Abramowicz W. On the crushing mechanics of thin-walled structures [J]. Journal of Applied mechanics, 1983, 50(4a): 727-734.
[16] Zhang X, Zhang H. Numerical and theoretical studies on energy absorption of three-panel angle elements [J]. International Journal of Impact Engineering, 2012, 46: 23-40.
[17] Qiu N, Gao Y K, Fang J G, et al. Theoretical prediction and optimization of multi-cell hexagonal tubes under axial crashing [J]. Thin-Walled Structures, 2016, 102: 111-121.
[18] Tran T N, Hou S J, Han X, et al. Crushing analysis and numerical optimization of angle element structures under axial impact loading [J]. Composite Structures, 2015, 119: 422-435.

PDF(1698 KB)

Accesses

Citation

Detail

段落导航
相关文章

/