玄武岩纤维复合材料梁-柱式护栏防撞性能

孙胜江1,朱长华1,2,梅葵花1

振动与冲击 ›› 2019, Vol. 38 ›› Issue (21) : 265-270.

PDF(967 KB)
PDF(967 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (21) : 265-270.
论文

玄武岩纤维复合材料梁-柱式护栏防撞性能

  • 孙胜江1,朱长华1,2,梅葵花1
作者信息 +

Anti-collision performance of basalt fiber composite beam-column guardrails

  • SUN Shengjiang1, ZHU Changhua1,2,MEI Kuihua1
Author information +
文章历史 +

摘要

针对目前桥梁护栏在使用过程中出现的碰撞性能差、使用寿命短等问题,提出连续玄武岩纤维复合材料(BFRP)护栏。首先建立护栏碰撞仿真体系,然后利用非线性显式动力学软件LS-DYNA模拟BFRP护栏碰撞过程,并与钢制梁柱式护栏作对比。结果表明,碰撞过程中系统沙漏能小于10%的总能量,有限元模拟过程具有良好的仿真性能;在碰撞过程中车辆没有出现翻越、骑跨及穿越护栏的现象,BFRP护栏具有良好的导向性能;在碰撞过程中座椅位置处的纵横向加速度值均小于规范容许值,BFRP护栏对车辆有着良好的缓冲功能;相比钢护栏,BFRP护栏在碰撞过程中能够更好地降低车辆的加速度值,能够更好地吸收碰撞能量,因此BFRP护栏防撞性能要优于钢护栏。

Abstract

Aiming at problems of poor performance and short service life of bridge guardrails during use, a continuous basalt fiber composite guardrail was proposed.Firstly, the collision simulation system of the proposed guardrail was established, and then the collision process of the guardrail was simulated with the nonlinear explicit dynamics software LS-DYNA.Finally, the simulation results of the proposed guardrail were compared with those of a steel guardrail.The results showed that the proposed system’s hourglass energy is less than 10% of the total energy in collision process, so the finite element simulation process has a good simulation performance; in collision process, vehicles do not have phenomena of pass over guardrail, astride it, or pass through it, so the guardrail has a good guiding performance; in collision process, the longitudinal and transverse acceleration values at the seat position are less than the standard allowable values, so the guardrail has a good buffer function for vehicles; compared to steel guardrails, the proposed guardrail can better reduce vehicle’s acceleration and absorb collision energy, so the anti-collision performance of the proposed guardrail is better than that of steel guardrail.

关键词

桥梁 / 玄武岩纤维复合材料 / 数值模拟 / 护栏 / 碰撞加速度 / 能量吸收

Key words

bridge / BFRP / numerical simulation / guardrail / acceleration / energy absorption

引用本文

导出引用
孙胜江1,朱长华1,2,梅葵花1. 玄武岩纤维复合材料梁-柱式护栏防撞性能[J]. 振动与冲击, 2019, 38(21): 265-270
SUN Shengjiang1, ZHU Changhua1,2,MEI Kuihua1. Anti-collision performance of basalt fiber composite beam-column guardrails[J]. Journal of Vibration and Shock, 2019, 38(21): 265-270

参考文献

[1] Bank L C, Gentey T R. Development of a pultruded composite material highway guardrail [J]. Composites Part A Applied Science & Manufacturing, 2001, 32(9): 1329-1338.
[2] Bank L C, Gentey T R. Composite material highway guardrail having high impact energy dissipation characteristics: US, US 6149134 A [P]. 2000.
[3] Dutta P. An investigation into the design and manufacture of frp composite w-beam guardrail[J]. International Journal of Materials & Product Technology, 2003, 19(1-2): 130-152.
[4] 计国庆. 玻璃钢复合材料应用于道路护栏的可行性研究[J]. 城市道桥与防洪,2006,(04):49-50+7
JI Guo-qing. Study of application of fiber glass reinforced plastics composite material in protecting fence of urban road [J]. Urban Roads Bridges & Flood Control, 2006, (04): 49-50+7
[5] 金思宇,黄有平,范欣愉,陈大华,黄险波. 玻纤增强热塑性复合材料公路护栏应用技术开发[J]. 高科技纤维与应用,2016,41(04):56-64+69.
JIN Si-yu,HUANG You-ping,FAN Xin-yu et al. Technical development of highway guardrail with glass fiber reinforced thermoplastic composites [J]. Hi-Tech Fiber & Application, 2016, 41(04): 56-64+69.
[16] 金友信. 玄武岩纤维组成及优异性能[J]. 山东纺织科技,2010,51(02):37-40.
GIN You-xin. Composition and Superior Property of Basalt Fibre[J]. Shandong Textile Science & Technology, 2010,51(02):37-40.
[7] 宋彦琦,邓  超. 新型过渡段护栏的力学机理与数值模拟[J]. 中国公路学报,2012, 25(01): 40-46.
SONG Yan-qi, DENG Chao, Mechanical mechanism and numerical simulation of new guard rail of transition section [J]. China Journal of Highway and Transport, 2012, 25(01): 40-46.
[8] 王蕊,张晓云,冯  浩,陈建国. 大客车侧翻碰撞护栏事故仿真分析及改进[J]. 振动与冲击,2014,33(06):40-43.
WANG Rui, ZHANG Xiao-yun, FENG Hao et al. Simulation and improvement of bus rollover against barrier[J]. Journal of vibration and shock,2014,33(06):40-43.
[9] 陈  涛,吴灵生,田东翔,魏  朗. 高速公路波形梁护栏安全性评价[J]. 长安大学学报:自然科学版, 2017, 37(06): 92-98.
CHEN Tao, WU Ling-sheng, TIAN Dong-xiang et al. Safety evaluation of w-beam guardrail on freeway[J]. Journal of Chang'an University :Natural Science Edition, 2017, 37(06): 92-98.
[10] 张 鹏,周德源. 基于ANSYS/LS-DYNA的护栏冲击模拟分析精度研究[J]. 振动与冲击,2008(04):147-152+163+176-177.
ZHANG Peng, ZHOU De-yuan. Accuracy analysisofa guardrail impact simulation based on ANSYS/LS-DYNA [J]. Journal of vibration and shock,2008(04):147-152+163+176-177.
[11] LIU C, SONG X, WANG J. Simulation analysis of car front collision based on LS-DYNA and Hyper Works [J]. Journal of Transportation Technologies, 2014, 4(4): 337-342.
[12] Sennah K, Samaan M, Elmarakbi A. Impact performance of flexible guardrail systems using LS-DYNA [J]. American Journal of Psychiatry, 2003, (3): 35-43.
[13] Benhizia A, Outtas T. Numerical simulation of frontal offset crash test for the vehicle frame using LS-DYNA [J]. World Academy of Science Engineering & Technology, 2011(79): 10-15.
[14] ZHANG H, YAO Y, ZHU D, et al. Tensile mechanical properties of basalt fiber reinforced polymer composite under varying strain rates and temperatures [J]. Polymer Testing, 2016, 51:29-39.
[15] Fiore V, Scalici T, Bella G D, et al. A review on basalt fibre and its composites[J]. Composites Part B Engineering, 2015, 74:74-94.
[16] Dhand V, Mittal G, Rhee K Y, et al. A short review on basalt fiber reinforced polymer composites [J]. Composites Part B Engineering, 2015, 73:166-180.
[17] WANG X, HU B, FENG Y, et al. Low velocity impact properties of 3D woven basalt/aramid hybrid composites[J]. Composites Science & Technology, 2008, 68(2): 444-450.
[18] Feraboli P, Wade B, Deleo F, et al. LS-DYNA MAT54 modeling of the axial crushing of a composite tape sinusoidal specimen [J]. Composites Part A, 2011, 42(11): 1809-1825.
[19] Rajadurai J S, Christopher T, Thanigaiyarasy G, et al. Finite element analysis with an improved failure criterion for composite wind turbine blades [J]. Forschung Im Ingenieurwesen, 2008, 72(4): 193-207.
[20] 雷正保. 大变形结构的耐撞性[D].长沙: 中南大学, 2004
LEI Zheng-bao. The crashworthiness of structure with large displacement and large deformation[D]. Changsha: Central South University, 2004
[21] JTG/T D81-2006,公路交通安全设施设计规范[S].
JTG/ T D81-2006, Specification for design of highway safety facilities[S].
[22] JTG B05-01-2013,公路护栏安全性能评价标准[S].
JTG B05-01-2013,Evaluation standard for safety performance of highway guardrail [S].

PDF(967 KB)

430

Accesses

0

Citation

Detail

段落导航
相关文章

/