基于能量有限元法的损伤充液管道振动分析

尚保佑 1,2,3,朱翔1,2, 3,李天匀 1,2, 3,梁孝天1,2, 3

振动与冲击 ›› 2019, Vol. 38 ›› Issue (21) : 31-36.

PDF(1174 KB)
PDF(1174 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (21) : 31-36.
论文

基于能量有限元法的损伤充液管道振动分析

  • 尚保佑 1,2,3 ,朱翔1,2, 3,李天匀 1,2, 3 ,梁孝天1,2, 3
作者信息 +

Vibration analysis of a damaged fluid-filled pipeline based on energy finite element method

  • SHANG Baoyou1,2,3,ZHU Xiang1,2,3,LI Tianyun1,2,3,LIANG Xiaotian1,2,3,
Author information +
文章历史 +

摘要

管道结构在服役期间会出现各种形式的损伤,其结构动力学参数和能量传播形式也会随之产生一定的变化,根据充液管道的动力学方程,推导得到了充液管道振动的能量平衡方程和能量有限元方程。分别采用能量有限元法和有限元法对充液管道的能量密度进行了计算和对比,验证了能量有限元法求解充液管道振动响应的准确性。在此基础上建立了基于能量密度变化和能量流变化的两个损伤指标,讨论了单元受损后的刚度变化和阻尼变化对能量流指标的影响,算例表明基于能量流变化的指标能够有效地识别充液管道结构的损伤部位。研究为基于能量有限元法预报充液管道的振动和基于该方法识别输流管道的损伤提供了理论基础。

Abstract

Damage often appears in fluid-filled pipelines during their service period with a certain change of their structural dynamic parameters and energy transmission form.Here, energy balance equation and energy finite element equation of a fluid-filled pipeline’s vibration were established according to its dynamic equation.The energy finite element method and the finite element method were used, respectively to compute and compare the fluid-filled pipeline’s energy density.The correctness of the energy finite element method used to solve vibration response of the fluid-filled pipeline was verified.Then, two damage indexes based on energy density variation and energy flow variation were established, respectively.The effects of damaged element’s stiffness and damping variations on the energy flow index were discussed.Examples showed that the index based on energy flow variation can be used to effectively identify the damage position of a fluid-filled pipeline structure; the study results provide a theoretical foundation for predicting a fluid-filled pipeline’s vibration and identifying its damage based on the energy finite element method.

关键词

充液管道 / 结构损伤 / 能量有限元法 / 能量密度 / 能量流

Key words

fluid-filled pipe / structure damage / energy finite element method;energy density;energy flow

引用本文

导出引用
尚保佑 1,2,3,朱翔1,2, 3,李天匀 1,2, 3,梁孝天1,2, 3. 基于能量有限元法的损伤充液管道振动分析[J]. 振动与冲击, 2019, 38(21): 31-36
SHANG Baoyou1,2,3,ZHU Xiang1,2,3,LI Tianyun1,2,3,LIANG Xiaotian1,2,3,. Vibration analysis of a damaged fluid-filled pipeline based on energy finite element method[J]. Journal of Vibration and Shock, 2019, 38(21): 31-36

参考文献

[1] 周祥, 张袁元. 基于振动分析的机械结构损伤识别方法综述[J]. 机械工程与自动化, 2017(1):216-218.
ZHOU Xiang, ZHANG Yuanyuan. A review of mechanical structure damage identification method based on vibration analysis.[J] .Mechanical engineering and automation. 2017(01):216-218.
[2] 刘景斌,王基,刘树勇. 基于振动分析的损伤识别方法综述[A]. 中国声学设计与噪声振动控制网、中城科数智慧城市规划设计研究中心、北京国建信文化发展中心.2017年全国声学设计与噪声振动控制工程学术会议论文集[C].中国声学设计与噪声振动控制网、中城科数智慧城市规划设计研究中心、北京国建信文化发展中心:2017:4.
[3] Zhu X, Li T Y, Zhao Y, et al. Structural power flow analysis of Timoshenko beam with an open crack[J]. Journal of Sound & Vibration, 2006, 297(1-2):215-226.
[4] Zhu X, Li T Y, Zhao Y, et al. Vibrational power flow analysis of thin cylindrical shell with a circumferential surface crack[J]. Journal of Sound & Vibration, 2007, 302(1–2):332-349.
[5] Santos E R O, Pereira V S, Arruda J R F, et al. StructuralDamage Detection Using Energy Flow Models[J].Shock & Vibration, 2008, 15(3-4):217-230.
[6] 朱翔, 李天匀, 赵耀,等. 基于有限元的损伤结构功率流可视化研究[J]. 机械工程学报, 2009, 45(2):132-137.
ZHU Xiang, LI Tianyun, ZHAO Yao,et al. Visualization research on the power flow characteristics of damaged structures based on the finite element method [J] .Chinese Journal of Mechanical Engineering,2009(2):132-137
[7] Pang Z H, Zhu X, Li T Y, et al. Nonlinear Input Power Flow Analysis of a Plate with a Breathing Crack[J]. Applied Mechanics & Materials, 2014, 638-640:163-167.
[8] 王迪,朱翔,李天匀,高双,衡星.基于能量有限元法的损伤板结构振动分析[J].振动与冲击,2017,36(11):73-78.
WANG Di,ZHU Xiang, LI Tianyun et al.Vibration analysis of damaged plates based on energy finite element method [J].Journal of Vibration and Shock,2017,36(11):73-78.
[9] 原凯, 王建民, 韩丽,等. 能量有限元在振动与噪声预示中的研究进展[J]. 强度与环境, 2015, 42(3):10-19.
YUAN Kai,WANG Jianmin,HAN Li,et al. Review on prediction of vibration and noise using energy finite element analysis [J] . Structure&Environment Engineering,2015(3):10-19.
[10] 殷学文, 崔宏飞, 顾晓军,等. 功率流理论、统计能量分析和能量有限元法之间的关联性[J]. 船舶力学, 2007, 11(4):637-646.
YIN Xuewen, CUI Hongfei, GU Xiaojun,et al. Relevancy among power flow theory,statistical energy analysis and energy finite element method [J].Journal of Ship Mechanics,2007, 11(4):637-646.
[11] Zhu D, Chen H, Kong X, et al. A hybrid finite element–energy finite element method for mid-frequency vibrations of built-up structures under multi-distributed loadings[J]. Journal of Sound & Vibration, 2014, 333(22):5723–5745.
[12] 刘知辉,牛军川,周一群,葛月. 基于能量有限元的多板耦合结构分析[A]. 中国振动工程学会振动与噪声控制专业委员会.第二十七届全国振动与噪声应用学术会议论文集[C].中国振动工程学会振动与噪声控制专业委员会:,2016:4.
[13] 刘知辉. 基于能量有限元方法的封闭耦合结构动力学特性研究[D].山东大学,2017.
[14] 葛月,牛军川,刘知辉.多种激励形式下任意角度耦合板振动传递特性研究[J].机械工程学报,2017,53(07):94-103.
GE Yue, NIU Junchuan, LIU Zhihui. Study on vibration transfer characteristics of arbitrary angle coupled plates under various excitation forms[J].Chinese Journal of Mechanical Engineering,2017,53(07):94-103.
[15] 解妙霞,郭瑞峰,李丽霞,张林杰.能量有限元预示复合材料结构动响应研究进展[J].力学与实践,2016,38(04):375-381.
JIE Miaoxia, GUO Ruifeng, LI Lixia,et al. Research Progress on dynamic response of composite structure by energy finite element method [J].Mechanics in Engineering,2016,38(04):375-381.
[16] Tijsseling A S. FLUID-STRUCTURE INTERACTION IN LIQUID-FILLED PIPE SYSTEMS: A REVIEW[J]. Journal of Fluids & Structures, 1996, 10(2):109–146.
[17] 王琳. 输流管道的稳定性、分岔与混沌行为研究[D]. 华中科技大学, 2006.
[18] 包日东,闻邦椿. 水下悬跨管道动力响应分析[J]. 振动与冲击,2007,(08):140-143+176-177.
BAO Ridong,WEN Bangchun. Dynamic response analysis of underwater suspension pipeline [J].Journal of Vibration and Shock,2007,(08):140-143+176-177.
[19] Yangyang, Tang, Qiao, et al. Nonlinear Vibration of A Loosely Supported Curved Pipe Conveying Pulsating Fluid under Principal Parametric Resonance[J]. Acta Mechanica Solida Sinica, 2016, 29(5):468-478.
[20] Zhou X W, Dai H L, Wang L. Dynamics of axially functionally graded cantilevered pipes conveying fluid[J]. Composite Structures, 2018, 190.
[21] 包日东, 闻邦椿. 分析弹性支承输流管道的失稳临界流速[J]. 力学与实践, 2007, 29(4):24-28.
BAO Ridong,WEN Bangchun. Analysis of Critical Instability Flow rate of Pipeline Conveying Fluid with Elastic Supports [J].Mechanics in Engineering,2007,29(4):24-28.
[22] Wohlever J C, Bernhard R J. Mechanical energy flow models of rods and beams[J]. Journal of Sound & Vibration, 1992, 153(1):1-19.
[23] 孙丽萍. 能量有限元法研究及其应用[D]. 哈尔滨工程大学, 2004.
[24] 祝丹晖, 解妙霞, 孔祥杰,等. 复杂机械结构中高频动响应能量有限元方法研究[J]. 中国工程科学, 2013(1):106-112.
ZHU Danhui, JIE Miaoxia, KONG Xiangjie, et al. Finite element method for high frequency dynamic response in complex mechanical structure [J].Chinese engineering science,2013(1):106-112.
[25] 杨旸. 能量有限元分析法的研究及其在复合材料层合板中的应用[D]. 宁波大学, 2013.

PDF(1174 KB)

Accesses

Citation

Detail

段落导航
相关文章

/