基于整形器的UHPC材料SHPB试验数值模拟与分析

任亮 1,2,何瑜 1,王凯 1

振动与冲击 ›› 2019, Vol. 38 ›› Issue (21) : 44-52.

PDF(3189 KB)
PDF(3189 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (21) : 44-52.
论文

基于整形器的UHPC材料SHPB试验数值模拟与分析

  • 任亮 1,2 ,何瑜 1,王凯 1
作者信息 +

Numerical simulation and analysis of SHPB test for UHPC material based on shaper

  • REN Liang1,2,HE Yu1,WANG Kai1
Author information +
文章历史 +

摘要

为探讨UHPC材料在SHPB试验中实现恒应变率加载和试件应力平衡的途径,采用大型有限元分析软件LS-DYNA从整形器材料、直径以及厚度等角度出发,开展了相应的数值模拟与分析。通过对软件中KCC损伤模型材料参数取值进行优化,拟合了UHPC材料动态损伤行为,建立了基于SHPB技术的UHPC材料冲击压缩数值模型并与实验验证。在此基础上,开展不同整形器材料、厚度和直径下的参数分析,探讨其对SHPB实验中恒应变率加载和试件应力平衡的影响。结果表明: (1) 整形器是实现恒应变率加载和试件应力平衡的有效途径;(2) 相对于铜质整形器,铝质整形器能获得的更小的恒应变率因子(Constant Strain Rate Factor,CSRF)值,能更好的实现恒定应变率加载;(3) 整形器直径增大到一定的程度,入射波将偏离一维应力波传播,建议整形器直径不宜大于杆件直径的0.4倍;(4) 为平衡加载过程中CSRF值和入射波强度,建议整形器长径比不宜大于0.2。

Abstract

To explore the means to realize constant strain rate loading and specimen stress equilibrium in SHPB tests for UHPC material, numerical simulation and analysis using the finite element software LS-DYNA were performed through varying material, diameter and thickness of shaper.The dynamic damage behavior of UHPC material was fitted through optimizing material parameters of the KCC damage model in LS-DYNA.An impact compression numerical model for UHPC material based on SHPB technique was established and verified with tests.Finally, the effects of shaper’s material, thickness and diameter on constant strain rate loading and specimen stress equilibrium in SHPB tests were studied.The results showed that the shaper is an effective means to realize constant strain rate loading and specimen stress equilibrium; the smaller constant strain rate factor (CSRF) can be obtained using an aluminum shaper compared with using a copper shaper to better realize constant strain rate loading; when the shaper diameter increases to a certain level, incident wave propagation deviates from one-dimensional stress wave, so the diameter of the shaper should not be larger than 0.4 times the rod diameter; to balance CSRF value and incident wave strength in loading process, the ratio of length to diameter of the shaper should not be larger than 0.2.

关键词

UHPC / 整形器 / 恒应变率 / 应力平衡 / 数值模拟

Key words

UHPC / pulse shaper / constant strain rate / stress equilibrium / numerical simulation

引用本文

导出引用
任亮 1,2,何瑜 1,王凯 1. 基于整形器的UHPC材料SHPB试验数值模拟与分析[J]. 振动与冲击, 2019, 38(21): 44-52
REN Liang1,2,HE Yu1,WANG Kai1. Numerical simulation and analysis of SHPB test for UHPC material based on shaper[J]. Journal of Vibration and Shock, 2019, 38(21): 44-52

参考文献

[1] Rong Z, Sun W, Zhang Y. Dynamic compression behavior of ultra-high performance cement based composites[J]. Int J Impact Eng, 2010, 37(5): 515-520.
[2] 任亮, 何瑜, 王凯. 超高性能混凝土抗冲击性能研究进展[J]. 硅酸盐通报, 2018, (1):146-154.
   REN Liang,HE Yu,WANG Kai. Review of Research on Impact Resistance of Ultra High Performance Concrete [J]. Bulletin of The Chinese Ceramic Society, 2018, (1):146-154.
[3] Jiao Chujie, Sun Wei. Impact Resistance of Reactive Powder Concrete[J]. Journal of Wuhan University of Technology- Mater. Sci. Ed. 2015, 30(4):752-757.
[4] 王勇华, 梁小燕, 王正道,等. 活性粉末混凝土冲击压缩性能实验研究[J]. 工程力学, 2008, 25(11):167-172.
   WANG Yonghua,LIANG Xiaoyan,WANG Zhengdao,et al. Experimental study on the impact compressive behavior of reactive powder concrete[J]. Engineering Mechanics, 2008, 25(11):167-172.
[5] 张胜林, 朱培呈, 董新龙. 大尺寸Hopkinson压杆实验若干问题讨论[J]. 兵工学报, 2009, (S2): 288-291.
   ZHANG Shenglin,ZHU Peicheng,DONG Xinlong. Discussion of some problems in large-size Hopkinson Compressive Bar[J]. Acta Armamentarii, 2009, (S2): 288-291.
[6] Naghdabadi R, Ashrafi M J, Arghavani J. Experimental and numerical investigation of pulse-shaped split Hopkinson pressure bar test[J]. Materials Science & Engineering A, 2012, 539(2): 285-293.
[7] 陈万祥, 郭志昆, 姜猛,等. 钢管RPC抗冲击压缩特性及极限强度确定方法[J]. 振动与冲击, 2016, 35(20): 160-166.
   CHEN Wanxiang, GUO Zhikun,JIANG Meng,et al. Dynamic behaviors and ultimate strengths of RPC-Filled steel Tubes under impact loading[J]. Journal of vibration and shock, 2016, 35(20):160-166.
[8] 宋力,胡时胜. SHPB测试中的均匀性问题及恒应变率[J].爆炸与冲击, 2005, 25(3):207-216.
   SONG Li, HU Shisheng. Stress uniformity and constant strain rate in SHPB test[J]. Explosion and Shock Waves , 2005, 25(3): 207-216.
[9] Hassan M, Wille K. Experimental impact analysis on ultra-high performance concrete (UHPC) for achieving stress equilibrium (SE) and constant strain rate (CSR) in Split Hopkinson pressure bar (SHPB) using pulse shaping technique[J]. Construction & Building Materials, 2017, 144: 747-757.
[10] 王嵩, 卢子兴. SHPB冲击压缩实验中泡沫塑料应力均匀化过程的数值模拟[J]. 振动与冲击, 2006, 25(5):54-57.
   Wang Song,Lu Zixing. Numerical smilation of stress homogenization in foamed plastic in SHPB Experiment[J]. Journal of vibration and shock, 2006, 25(5): 54-57.
[11] 王慧英. 高强混凝土SHPB试验的数值模拟研究[J]. 工程抗震与加固改造, 2012, 34(3):64-68.
   Wang Huiying,Study on numerical simulation of SHPB test of high-strength concrete[J]. Earthquake Resistant Engineering and Retrofitting, 2012, 34(3): 64-68.
[12] Wu J, Li L, Du X, et al. Numerical Study on the Asphalt Concrete Structure for Blast and Impact Load Using the Karagozian and Case Concrete Model[J]. Applied Sciences, 2017, 7(2): 202.
[13] Samani A K, Attard M M. A stress–strain model for uniaxial and confined concrete under compression[J]. Engineering Structures, 2012, 41(3):335-349.
[14] Markovich N, Kochavi E, Ben-Dor G. An improved calibration of the concrete damage model[J]. Finite Elements in Analysis & Design, 2011, 47(11):1280-1290.
[15] Unosson M. Numerical simulations of penetration and perforation of high performance concrete with 75mm steel projectile [J]. Defence Research Establishment, 2000.

PDF(3189 KB)

532

Accesses

0

Citation

Detail

段落导航
相关文章

/