基于SGA-BP-GA方法的FPSO舷侧结构耐撞性能优化设计

刘刚1,2,高明星3,陈志颖1,黄一1,2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (21) : 62-70.

PDF(2519 KB)
PDF(2519 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (21) : 62-70.
论文

基于SGA-BP-GA方法的FPSO舷侧结构耐撞性能优化设计

  • 刘刚1,2,高明星3,陈志颖1,黄一1,2
作者信息 +

Optimal design for collision resistance performance of FPSO side structure based on SGA-BP-GA method

  • LIU Gang1,2,GAO Mingxing3, CHEN Zhiying1, HUANG Yi1,2
Author information +
文章历史 +

摘要

由于船体结构及碰撞优化的复杂性,使得传统优化方法难以有效进行。基于遗传算法、模拟退火算法和BP神经网络,结合正交试验设计和ABAQUS参数化仿真技术,提出一种新的结构耐撞性优化方法—SGA-BP-GA。为了提高BP网络对结构耐撞性指标的预测精度和泛化能力,利用模拟退火算法的概率突跳特性克服遗传算法易早熟和陷于局部最优的缺点,在此基础上采用模拟退火遗传算法(SGA)对BP网络的权重进行优化。采用提出的SGA-BP-GA方法对FPSO舷侧结构耐撞性能进行优化设计,以验证其准确性与可行性。结果表明:与传统BP、GA-BP和SA-BP相比,SGA-BP具有更高的预测精度和泛化能力;与GA-BP-GA方法相比,SGA-BP-GA优化结果仍提高了5.34%;提出的SGA-BP-GA方法能够较好的适用于复杂的船体结构耐撞性优化设计。
 

Abstract

Due to the complexity of ship structure and collision optimization, traditional optimization methods are difficult to effectively use.Here, a new structural collision resistance performance optimization method, i.e., SGA-BP-GA, was proposed based on genetic algorithm (GA), simulated annealing algorithm and BP neural network combined with the orthogonal test design and ABAQUS parametric simulation technique.In order to improve prediction accuracy and generalization ability of the BP network for the structural crashworthiness index, the probabilistic jump feature of the simulated annealing algorithm was used to overcome the genetic algorithm’s shortcomings of being easy to be precocious and trapped in local optimization.Then, the simulated annealing genetic algorithm (SGA) was used to optimize weights of the BP network.The proposed SGA-BP-GA method was used to optimize the collision resistance performance of a FPSO’s side structure to verify its correctness and feasibility.The results showed that compared to traditional BP, GA-BP and SA-BP, the SGA-BP one has higher prediction accuracy and generalization ability; compared to the GA-BP-GA method, the optimized results of the SGA-BP-GA one increase 5.34%; the proposed SGA-BP-GA method is more appropriate for the complex optimal design of ship structures’ collision resistance performance.

关键词

FPSO
/ 耐撞性能优化设计 / SGA-BP-GA / 模拟退火 / 遗传算法 / BP神经网络

Key words

 FPSO / optimized design of crashworthiness / SGA-BP-GA method / Simulated annealing / Genetic algorithm / BP neural network

引用本文

导出引用
刘刚1,2,高明星3,陈志颖1,黄一1,2. 基于SGA-BP-GA方法的FPSO舷侧结构耐撞性能优化设计[J]. 振动与冲击, 2019, 38(21): 62-70
LIU Gang1,2,GAO Mingxing3, CHEN Zhiying1, HUANG Yi1,2 . Optimal design for collision resistance performance of FPSO side structure based on SGA-BP-GA method[J]. Journal of Vibration and Shock, 2019, 38(21): 62-70

参考文献

[1] 高振国. 船体桁材在碰撞与搁浅中的结构变形机理及FPSO舷侧结构抗撞性能研究[D]. 上海:上海交通大学, 2015.
[2] 高振国, 胡志强, 王革. FPSO舷侧结构抗撞性能的解析计算研究[J]. 工程力学, 2014, 31(s1):155-160.
GAO Zhenguo, HU Zhiqiang, WANG Ge. A simplified analytical method for prediction of anti-collision capability of FPSO side structures [J]. Engineering Mechanics, 2014, 31(s1): 155-160.
[3] 何欢, 朱广荣, 何成,等. 基于Kriging模型的结构耐撞性优化[J]. 南京航空航天大学学报, 2014, 46(2):297-303.
HE Huan, ZHU Guangrong, HE Cheng, et al. Crashworthiness Optimization Based on Kriging Metamodeling [J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(2): 297-303.
[4] LI Meng, DENG Zongquan, GUO Hongwei, et al. Optimizing crashworthiness design of square honeycomb structure [J]. Journal of Central South University, 2014, 21(3): 912-919.
[5] 文桂林, 孔祥正, 尹汉锋,等. 泡沫填充夹芯墙多胞结构的耐撞性多目标优化设计[J]. 振动与冲击, 2015, 34(5):115-121.
WEN Guilin, KONG Xiangzheng, YIN Hanfeng, et al. Multi-objective crashworthiness optimization design of foam-filled sandwich wall multi-cell structures [J]. Journal of Vibration and Shock, 2015, 34(5):115-121.
[6] 张平, 马建, 那景新. 波纹管耐撞性的多目标优化[J]. 振动与冲击, 2015, 34(15):12-16.
ZHANG Ping, MA Jian, NA Jingxin. Multi-objective optimization for crashworthiness of corrugated tubes [J]. Journal of Vibration and Shock, 2015, 34(15):12-16.
[7] 许平, 邵恒, 严佳丽. 基于自适应响应面法的膨胀式吸能结构耐撞性优化设计[J]. 振动与冲击, 2017, 36(11):118-123.
XU Ping, SHAO Heng, YAN Jiali. Crashworthiness optimization design of expanding type energy absorption devices based on adaptive response surface method [J]. Journal of Vibration and Shock, 2017, 36(11):118-123.
[8] JIANG Zhiyu, GU Mintong. Optimization of a fender structure for the crashworthiness design [J]. Materials & Design, 2010, 31(3): 1085-1095.
[9] Zarei H R, Kröger M. Bending behavior of empty and foam-filled beams: Structural optimization [J]. International Journal of Impact Engineering, 2008, 35(6): 521-529.
[10] 蒋致禹, 顾敏童, 赵永生. 一种薄壁吸能结构的设计优化[J]. 振动与冲击, 2010, 29(2):111-116.
JIANG Zhiyu, GU Mintong, ZHAO Yongsheng. Design Optimization of a Thin Wall Energy Absorbing Structure[J]. Journal of Vibration and Shock, 2010, 29(2):111-116.
[11] 王自力, 朱学军, 顾永宁. 船体结构耐撞性优化设计方法研究[J]. 中国造船, 2000, 41(2):34-40.
WANG Zili, ZHU Xuejun, GU Yongning. Application of optimization method to ship structural crashworthiness [J]. Shipbuilding of China, 2000, 41(2):34-40.
[12] 蒋致禹. 船舶护舷结构的碰撞研究[D]. 上海:上海交通大学, 2010.
[13] 张延昌, 葛珅玮, 刘昆,等. 基于正交设计与BP-GA算法的船体结构耐撞性能优化设计[J]. 江苏科技大学学报(自然科学版), 2013, 27(6):511-517.
ZHANG Yanchang, Ge Shenwei, LIU Kun, et al. Optimized design of ship structural crashworthiness based on orthogonal design and BP-GA algorithm [J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2013, 27(6):511-517.
[14] 李慧, 张磊, 甘浪雄,等. 舷侧圆管式夹层板结构耐撞性能优化设计[J]. 船舶工程, 2016, 38(4):51-55.
LI Hui, ZHANG Lei, GAN Langxiong, et al. Optimized design of side structural crashworthiness based on tube-style sandwich panel [J]. Ship Engineering, 2016, 38(4):51-55.
[15] 李明洲, 陈机林, 刘超,等.基于SA-GA-BP的某爆破扫雷器电液伺服系统建模[J].兵工自动化, 2017, 36(3):40-44.
LI Mingzhou, CHEN Jilin, LIU Chao, et al. Modeling of electro-hydraulic servo system of certain type demolition mine sweeper based on SA-GA-BP [J]. Ordnance Industry Automation, 2017, 36(3):40-44.
[16] 曹金凤. Python语言在Abaqus中的应用[M]. 北京:机械工业出版社, 2011.
[17] 刘昆, 王自力, 张延昌,等. 基于全耦合技术的船体结构碰撞性能研究[J]. 船舶力学, 2015, 19(5):574-581.
LIU Kun, WANG Zili, ZHANG Yanchang. Collision behavior of structural analysis in ship collisions based on full-coupling technology [J]. Journal of Ship Mechanics, 2015, 19(5):574-5.

PDF(2519 KB)

Accesses

Citation

Detail

段落导航
相关文章

/