在拼接模具铣削过程中,由于拼接过缝处硬度差的影响致使铣削力发生突变并加剧振动,进而降低工件表面质量和刀具的使用寿命。针对上述问题本文首先建立了拼接过缝区域的切屑厚度模型,分析了切屑厚度与铣削力系数的关系;然后运用基于Runge-Kutta法的全离散法求解铣削动力学方程,由于瞬时铣削力系数随切削参数的变化而变化,故基于该方法可获得上限和下限的多条稳定性预测曲线,并利用最小包络法形成上、下限的带状区域作为最终的稳定边界;最后综合运用时域、频域分析来验证铣削稳定性预测曲线的准确性。本文提出的稳定性预测模型可以为大型汽车覆盖件铣削加工过程提供理论参数依据,并解决铣削拼接处冲击载荷引起的振动问题。
Abstract
In milling process of splicing dies, due to the influence of different hardness splicing of workpiece, milling force changes suddenly and vibration intensifies when milling passes through splice seam to reduce the workpiece surface quality and the service life of the tool.Here, firstly, a scrap thickness model of a splicing seam area was established to analyze the relation between scrap thickness and milling force coefficient.Secondly, the full discretization method based on Runge-Kutta algorithm was used to solve the milling dynamic equation.Due to instantaneous milling force coefficient changing with variation of cutting parameters, multiple stability prediction curves for upper and lower limits were obtained with this method.The minimum envelope method was used to form the banded zone of the upper and lower limits as the final stable boundary.Finally, the time domain and frequency domain analyses were used to verify the correctness of milling stability prediction curves.It was shown that the proposed stability prediction model can provide theoretical parameters for milling process of large automobile panels, and solve vibration problems caused by impact load at milling splicing seams.
关键词
拼接模具 /
铣削稳定性 /
瞬时铣削力系数法 /
最小包络法 /
lobes图
{{custom_keyword}} /
Key words
Splicing die /
Milling stability /
Instantaneous milling force coefficient method /
Minimum envelope method /
Stability lobes
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Gonzalo O, Beristain J, Jauregi H, et al. A method for the identification of the specific force coefficients for mechanistic milling simulation[J]. International Journal of Machine Tools and Manufacture, 2010, 50(9): 765-774.
[2] Gonzalo O, Beristain J, Jauregi H, et al. A method for the identification of the specific force coefficients for mechanistic milling simulation[J]. International Journal of Machine Tools and Manufacture, 2010, 50(9): 765-774.
[3] Campatelli G, Scippa A. Prediction of milling cutting force coefficients for Aluminum 6082-T4[J]. Procedia CIRP, 2012, 1: 563-568.
[4] Grossi N, Sallese L, Scippa A, et al. Speed-varying cutting force coefficient identification in milling[J]. Precision Engineering, 2015, 42: 321-334.
[5] Wang M, Gao L, Zheng Y. An examination of the fundamental mechanics of cutting force coefficients[J]. International Journal of Machine Tools and Manufacture, 2014, 78: 1-7.
[6] 岳彩旭, 高海宁, 刘献礼. 基于动态切削力系数的插铣加工过程稳定性研究[J]. 机械工程学报, 2017(17): 193-201.
Yue C X, Gao H N, Liu X L.Study on the stability of milling
process based on dynamic cutting force coefficient[J]. Journal
of Mechanical Engineering, 2017(17): 193-201.
[7] Oscar Gonzalo, Jokin Beristain. A method for the identification of the specific force coefficients for mechanistic milling simulation[J]. International Journal of Machine Tools & Manufacture,2010(50)765–774.
[8] Altintas Y. Analytical prediction of three dimensional chatter stability in milling[J]. JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 2001, 44(3): 717-723.
[9] Merdol S D, Altintas Y. Multi frequency solution of chatter stability for low immersion milling[J]. Transactions of the ASME. Journal of Manufactuing Science and Engineering, 2004, 126(3): 459-466.
[10] Bachrathy D, Steoan G. Improved predition of stability lobes with extend multi frequency solution[J]. Cirp Annals-Manufacturing Technology, 2013, 62(1): 411-414.
[11] 宋清华,艾兴,于水清.高速铣削稳定性与表面加工精度研究[J].制造技术与机床,2008(4):40-43.
Song Q H, Ai X, Yu S Q. Study on the stability and surface
machining accuracy of high-speed milling [J]. Manufacturing
Technology and Machine tool,2008(4):40-43.
[12] 李忠伟,龙新华,孟光. 基于截断的铣削系统稳定性的离散分析法[J]. 振动与冲击,2009,28(5): 69-73.
Li Z W, Long X H, Meng G.Semi-discrete analysis method for the stability of millingsystem based on truncation [J].Vibration
and Impact, 2009,28(5): 69-73.
[13] Ding Y, Zhu L, Zhang X, et al. A full-discretization method for prediction of milling stability[J]. International Journal of Machine Tools&Manufacture, 2010, 50(5): 502-509.
[14] Liu X L, Li R Y. A prediction method of milling chatter stability for complex surface mold[J]. Int J Adv Manuf Technol(2017)89: 2637-2648.
[15] Bayly P V, Halley J E, Mann B P. Stability of interrupted cutting by temporal finite element analysis[J]. Journal of Manufacturing Science and Engineering, 2003, 125(2): 220-225.
[16] Ding Y,Zhang X,Ding H,etal.Numerical integration method for prediction of milling stability[J]. Journal of Manufacturing Science and Engineering, 2011, 133(3):31005.
[17] Ding Y,Zhang X,Ding H,etal. Milling stability analysis using the specral method[J]. Science China Technological Sciences, 2011, 54(12): 3130-3136.
[18] Zhang X, Xiong C, Ding Y, et al. Variable-step integration method for milling chatter stability prediction with multiple delays[J]. Science China Technological Sciences, 2011, 54(12): 3137-3154.
[19] Liang X G, Yao Z Q, Luo L, et al. An improved numerical integration method for predicting milling stability with varying time delay[J]. The International Journal of Advanced Manufacturing Technology, 2013, 68(9-12): 1967-1976.
[20] Li Z Q, Yang Z K. Prediction of chatter stability for milling process using Runge-Kutta-based complete discretization method. Int J Adv Manuf Technol(2016)86:943–95.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}