潜艇设备冲击试验舱段环境特性研究

韩璐1,2,冯麟涵2,张磊2,闫明1

振动与冲击 ›› 2019, Vol. 38 ›› Issue (21) : 80-85.

PDF(1932 KB)
PDF(1932 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (21) : 80-85.
论文

潜艇设备冲击试验舱段环境特性研究

  • 韩璐1,2,冯麟涵2,张磊2,闫明1
作者信息 +

Environmental characteristics of submarine equipment’s impact test section

  • HAN Lu1,2, FENG Linhan2, Zhang Lei2, Yan Ming1
Author information +
文章历史 +

摘要

对于新研舰载设备,各国海军均要求其抗冲击性能满足考核标准才可装舰使用。为了进行对潜艇内大型设备在接近实战条件下的考核试验,设计并建造了模拟潜艇的试验舱段平台。在不同爆源距离的标准考核工况下,数值模拟了试验舱段的水下爆炸试验,对试验舱段提供的冲击环境进行预报,并根据数值模拟结果及相关理论计算拟定试验工况后,完成了3次水下爆炸试验。通过对实测冲击谱的圆整及插值拟合分析得出,试验舱段的建立满足大型设备冲击环境指标的横垂比要求,为进一步考核潜艇内大型设备抗冲击性能提供了必要的环境。

Abstract

For the newly developed shipborne equipment, navies of all countries require their impact resistance to meet the assessment criteria before they can be installed on ships.In order to conduct impact examination tests of a submarine’s large equipment under the condition near actual combat, the platform to simulate a submarine’s test section was designed and manufactured.Under standard examination conditions with different distances from the blast source, underwater explosion tests of the test section were numerically simulated to predict shock environment provided by the test section.According to numerical simulation results and relevant theoretical calculations, test conditions were drawn up and three underwater explosion tests were completed.The actually measured impact spectra were analyzed through rounding and interpolation fitting.It was shown that the establishment of the test section meets the requirement for the ratio of transverse to vertical of the large equipment shock environment index; the study results provide a necessary environment for further examining submarine large equipment’s impact resistance.

关键词

水下爆炸 / 潜艇 / 冲击环境 / 抗冲击性能

Key words

underwater explosion / submarine / shock environment;shock resistance performance

引用本文

导出引用
韩璐1,2,冯麟涵2,张磊2,闫明1. 潜艇设备冲击试验舱段环境特性研究[J]. 振动与冲击, 2019, 38(21): 80-85
HAN Lu1,2, FENG Linhan2, Zhang Lei2, Yan Ming1. Environmental characteristics of submarine equipment’s impact test section[J]. Journal of Vibration and Shock, 2019, 38(21): 80-85

参考文献

[1] 刘建湖.舰船非接触水下爆炸动力学的理论与应用[D]. 无锡: 中国船舶科学研究中心,2011.
LIU Jian-hu. Theory and application of non-contact underwater explosion dynamics of ships[D]. Wuxi: China Ship Development and Design Center.
[2] N. Chandra Shekhar, H.Hatwal, A.K. Mallik. Response of non-linear dissipative shock isolators. Journal of Sound and Vibration. 1998, 214(4):589-603.
[3] 恽寿榕,赵衡阳.爆炸力学[M]. 北京: 国防工业出版社. 2005:1-28.
Yun Shou-rong, ZHAO Heng-yang. Mechanics of Explosion[M]. Beijing: National Defense Industry Press. 2005:1-28.
[4] 永井保.“圆筒壳の冲击外力による局部凹损实验の结果について”. 1965年日本造船学会春季演讲会志, 117卷, 229-239 .
[5] 永井保. “圆筒壳の冲击外力による局部凹损实验の结果について第二报”. 1966年日本造船学会春季演讲会志,118卷,177-184.
[6] StultzJr G K, Atkatsh R S and Chan K K. Single Hull Versus Double Hull Design Shock Response of Underwater Vessels[C]. Proceedings of the 65th Shock and Vibration Symposium. 1994,147(1):207-216.
[7] 肖锋,华宏星,谌勇,等. 潜艇湿表面抗冲覆盖层压缩特性及抗冲击性能研究[J]. 振动与冲击. 2013,32(18):126-132.
Xiao Feng, HUA Hong-xing, Chen Yong, et al. Compression and shock resistance performances of an anti-shock layer coated on wet surface of a submarine[J]. Journal of Vibration and Shock. 2013,32(18):126-132.
[8] 潘杰. 潜艇非耐压结构抗爆性能研究[D]. 哈尔滨: 哈尔滨工程大学,2011.
Pan Jie. Research on anti-shock capacity of the non-pressure structure of  submarine subjected to underwater explosion[D]. Harbin: Harbin Engineering University, 2011.
[9] GEERS T L, HUNTER K S. An integrated wave-effects model form underwater explosion bubble[J]. Journal of the Acoustical Society of America, 2002, 111(4): 1584-1601.
[10] 姚熊亮. 水下爆炸气泡动力学[M]. 哈尔滨工程大学出版社, 2012.
Yao Xiong-liang. Underwater explosion bubble dynamics[M]. Haebin Engineering University Press, 2012.
[11] Astley R J. Transient wave envelope elements for wave problems for wave problems[J]. Journal of Sound and Vibration, 1996, 192(1):245-261.
[12] 崔杰. 近场水下爆炸气泡载荷及对结构毁伤试验研究[D]. 哈尔滨:哈尔滨工程大学, 2013.
Cui Jie. Experimental study on underwater explosion bubble loads and damage on the structure nearby[D].Harbin: Harbin Engineering University, 2013.
[13] 王加夏,宗智,周力,等. 水下爆炸气泡与浮体结构相互作用的研究[J]. 振动与冲击, 2016,35(12):41-48.
Wang Jia-xia, ZongZhi, Zhou Li, et al. The interaction of underwater explosion bubble dynamics and a floating structure[J]. Journal of Vibration and Shock. 2016,35(12):41-48.
[14] Shin Young S, Santiago Leonard D. Surface ship shock modeling and simulation: two dimensional analysis[J]. Shock and Vibration, 1998,(5):129-137.
[15] GJB1060.1-91, 舰船环境条件要求机械环境[S]. 北京:中国标准出版社,1991.
GJB1060.1-9, General requirement for environmental conditions of naval ships Mechanical environments[S].Beijing:Standards press of China, 1991.
[16] GJB150.18-1986, 军用设备环境试验方法冲击试验[S]. 北京:中国标准出版社,1986.
GJB150.18-1986, Environmental testmethods for military equipments shock test[S].Beijing:Standards press of China, 1986.
[17] Geers T L, Hunter K S. An integrated wave-effects model for an underwater explosion bubble[J]. Journal of the Acoustical Society of America, 2002, 111(4):1584-601.
[18] ISO18431. Mechanical vibration and shock-Signal processing- Part4: Schok-response spectrum analysis.
[19] HJB554. 舰用设备双波冲击机试验方法[S].北京:科技出版社,2012.
HJB554. Ship equipment double-wave impact test method[S]. Beijing: Science Press, 2012.
[20]  汪玉, 华红星. 舰船现代冲击理论及应用[M]. 北京: 科技出版社,2005:1-16,66-68.[21]  Reid W D. The response of surface ships to underwater explosion, DSTO-GD-0109,1996.

PDF(1932 KB)

Accesses

Citation

Detail

段落导航
相关文章

/