一种双摆效应桥式起重机光滑鲁棒控制方法

孙 宁,张建一,吴易鸣,方勇纯

振动与冲击 ›› 2019, Vol. 38 ›› Issue (22) : 1-6.

PDF(1053 KB)
PDF(1053 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (22) : 1-6.
论文

一种双摆效应桥式起重机光滑鲁棒控制方法

  • 孙 宁,张建一,吴易鸣,方勇纯
作者信息 +

Continuous robust control for double-pendulum overhead cranes

  • SUN Ning,ZHANG Jianyi,WU Yiming,FANG Yongchun
Author information +
文章历史 +

摘要

在现代工业领域,起重机被广泛用于大体积负载的运输工作。在许多实际应用场景中,由于吊钩的质量无法忽略不计,整个起重机系统往往呈现出复杂的双摆效应,这一特性增强了起重机系统的复杂性、非线性与欠驱动特性。因此,针对具有双摆效应的起重机系统,文章提出了一种新型的鲁棒控制策略,实现了台车的精确定位,并有效地消除了负载与吊钩的两级摆动。具体而言,首先对原系统模型进行近似线性化处理,得到了可以准确描述双摆起重机特性的近似化模型。在此基础上,提出了一种基于超螺旋的光滑鲁棒控制算法,并通过严格的理论分析证明了闭环系统的稳定性。最后,将所提方法应用于双摆起重机硬件实验平台,实验结果验证了所提控制器的优良性能。

Abstract

Crane systems are widely used to transport large-scale cargoes in modern industry. In practical applications, crane systems always exhibit complicated double pendulum effects with non-negligible hook mass, which makes the control issue more difficult with strong nonlinearity and underactuated characteristics. To handle these issues, a new robust control strategy was proposed for double pendulum crane systems, which achieves accurate trolley positioning and effective swing eliminating. Specifically, by linearizing the original dynamic system, an approximate model was established with pendulum characteristics. Then, a super twisting-based continuous robust control method was presented, and the stability of the closed-loop system was proved rigorously by theoretical analysis. Finally, hardware experimental results were provided to verify the effectiveness of the proposed controller on a self-built hardware experiment platform.  

关键词

双摆效应起重机 / 消摆 / 鲁棒控制

Key words

 double-pendulum cranes / swing suppression / robust control

引用本文

导出引用
孙 宁,张建一,吴易鸣,方勇纯 . 一种双摆效应桥式起重机光滑鲁棒控制方法[J]. 振动与冲击, 2019, 38(22): 1-6
SUN Ning,ZHANG Jianyi,WU Yiming,FANG Yongchun. Continuous robust control for double-pendulum overhead cranes[J]. Journal of Vibration and Shock, 2019, 38(22): 1-6

参考文献

[1] 欧阳慧珉, 佐野滋则, 内山直树, 等. 基于LMI的旋转起重机鲁棒控制器设计[J]. 振动与冲击, 2014, 33(1): 106-112.
OUYANG Hui-min, SANO S, UCHIYAMA N, et al. Robust controller design for rotary cranes based on LMI [J].  Journal
of Vibration and Shock, 2014, 33(1): 106-112.
[2] 欧阳慧珉, 张广明, 王德明, 等. 基于S型曲线轨道的桥式起重机最优控制[J]. 振动与冲击, 2014, 33(23): 140-144.
OUYANG Hui-min, ZHANG Guang-ming, WANG De-ming, et al. Optimal control for overhead cranes based on S-shaped curve trajectory [J]. Journal of Vibration and Shock, 2014, 33(23): 140-144.
[3] Küchler S, Mahl T, Neupert J, et al. Active control for an offshore crane using prediction of the vessel’s motion [J]. IEEE/ASME Transactions on Mechatronics, 2011, 16(2): 297-309.
[4] Xin X, She J H, Liu Y N. A unified solution to swing-up control for n-link planar robot with single passive joint based on virtual composite links and passivity [J]. Nonlinear Dynamics, 2012, 67(2): 909-923.
[5] Chang C Y, Chiang K. Fuzzy projection control law and its application to the overhead crane [J]. Mechatronics, 18(10): 607-615.
[6] Uchiyama N, Ouyang H M, Sano S. Simple rotary crane
dynamics modeling and open-loop control for residual load sway suppression by only horizontal boom motion [J]. Mechatronics, 2013, 23(8): 1223-1236.
[7] Liu R J, Li S H, Ding S H. Nested saturation control for overhead crane systems [J]. Transactions of the Institute of Measurement and Control, 2012, 34(7): 862-875.
[8] Solihin M I, Wahyudi, Legowo A. Fuzzy-tuned PID antiswing control of automatic gantry crane [J]. Journal of Vibration and Control, 2009, 16(1): 127-145.
[9] Xie X M, Huang J, Liang Z. Vibration reduction for flexible systems by command smoothing [J]. Mechanical Systems and Signal Processing, 2013, 39(1-2): 461-470.
[10] Yu X, Lin X W, Lan W Y. Composite non- linear feedback controller design for an overhead crane servo  system [J]. Transactions of the Institute of Measurement and Control, 2014, 36(5): 662-672.
[11] Lee H H, Liang Y, Segura D. A sliding-mode antiswing trajectory control for overhead cranes with high-speed load hoisting [J]. Journal of Dynamic Systems, Measurement, and Control, 2006, 128(4): 842-845.
[12] Sun N, Fang Y C, Zhang X B. Energy coupling output feedback control of 4-DOF underactuated cranes with saturated inputs [J]. Automatica, 2013, 45(9): 1318-1325.
[13] Yu W, Moreno-Armendariz M A, Rodriguez F O. Stable adaptive compensation with fuzzy CMAC for an overhead crane [J]. Information Sciences, 2011, 181(21): 4895-4907.
[14] Sun N, Fang Y C, Chen H, et al. Nonlinear stabilizing control for ship-mounted cranes with ship roll and heave movements: Design, analysis, and experiments [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, in press, DOI: 10.1109/TSMC.2017.2700393.
[15] Sun N, Yang T, Chen H, et al. Adaptive anti-swing and positioning control for 4-DOF rotary cranes subject to uncertain/unknown parameters with hardware experiments [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, in press, DOI: 10.1109/TSMC.2017.2765 183.
[16] 王伟, 易建强, 赵冬斌, 等. 一类非确定欠驱动系统的串级模糊滑模控制[J]. 控制理论与应用, 2006, 23(1): 53-59.
WANG Wei, YI Jian-qiang, ZHAO Dong-bin, et al. Cascade fuzzy sliding mode control for a class of uncertain underactuated systems [J]. Control Theory and Applications, 2006, 23(1): 53-59.
[17] Sun N, Fang Y C, Zhang Y D, et al. A novel kinematic coupling based trajectory planning method for overhead cranes [J]. IEEE/ASME Transactions on Mechatronics, 2012, 17(1): 166-173.
[18] Zavari K, Pipeleers G, Swevers J. Gain-scheduled controller design: Illustration on an overhead crane [J]. IEEE Transactions on Industrial Electronics, 2014, 61(7): 3713-3718.
[19] Piazzi A, Visioli A. Optimal dynamic-inversion-based control of an overhead crane [J]. IEE Proceedings-Control Theory and Applications, 2002, 149(5): 405-411.
[20] Singhose W, Kim D, Kenison M. Input shaping control of double-pendulum bridge crane oscillations [J]. ASME Journal of Dynamic Systems, Measurement, and Control, 2008, 130(3): 1-7.
[21] Masoud Z, Alhazza K, Abu-Nada E, et al. A hybrid command-shaper for double-pendulum overhead cranes [J]. Journal of Vibration and Control, 2014, 20(1): 24-37.
[22] Zhang M H, Ma X, Chai H, et al. A novel online motion planning method for double-pendulum overhead cranes [J]. Nonlinear Dynamics, 2016, 85(2): 1079-1090.
[23] 孙宁, 方勇纯, 钱彧哲. 带有状态约束的双摆效应吊车轨迹规划[J]. 控制理论与应用, 2014, 31(7): 974-980.
SUN Ning, FANG Yong-chun, QIAN Yu-zhe. Motion planning for cranes with double pendulum effects subject to state constraints [J]. Control Theory and Applications, 2014, 31(7): 974-980.
[24] Sun N, Fang Y C, Chen H, et al. Super-twisting-based antiswing control for underactuated double pendulum cranes [J]. in Proceedings of the IEEE International Conference on Advanced Intelligent Mechatronics, 2015: 749-754.
[25] Tuan L A, Lee S G. Sliding mode controls of double-pendulum crane systems [J]. Journal of Mechanical Science and Technology, 2013, 27(6): 1863-1873.
[26] Masoud Z N, Nayfeh A H. Sway reduction on container cranes using delayed feedback controller [J]. Nonlinear Dynamics, 2003, 34(3-4): 347-358.
[27] Sun N, Wu Y M, Fang Y C, et al. Nonlinear antiswing control for crane systems with double-pendulum swing effects and uncertain parameters: Design and experiments [J]. IEEE Transactions on Automation Science and Engineering, in press, DOI: 10.1109/TASE.2017.2723539.
[28] Sun N, Fang Y C, Chen H, et al.  Amplitude-saturated nonlinear output feedback antiswing control for underactuated cranes with double-pendulum cargo dynamics[J]. IEEE Transactions on Industrial Electronics, 2017, 64(3): 2135-2146.
[29] 郭卫平, 刘殿通. 二级摆型吊车系统动态及基于无源的控制[J]. 系统仿真学报, 2008, 20(18): 4945-4948.
GUO Wei-Ping, LIU Dian-Tong. Double-pendulum-type crane dynamics and passivity based control [J]. Journal of System Simulation, 2008, 20(18): 4945-4948.
[30] Rouchon P, Fliess M, Levine J, et al. Flatness, motion planning and trailer systems [J]. in Proceedings of the 32nd IEEE Conference on Decision and Control, 1993: 2700-2705.
[31] Moreno J A, Osorio M. Strict Lyapunov functions for the super-twisting algorithm [J]. IEEE Transactions on Automatic Control, 2012, 57(4): 1035-1040.

PDF(1053 KB)

626

Accesses

0

Citation

Detail

段落导航
相关文章

/