基于流固耦合的T型管振动特性分析

赵江 1,2,俞建峰 1,2,楼琦1,2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (22) : 117-123.

PDF(1864 KB)
PDF(1864 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (22) : 117-123.
论文

基于流固耦合的T型管振动特性分析

  • 赵江 1,2 , 俞建峰 1,2,楼琦1,2
作者信息 +

Modal analysis of T-shaped pipes based on a fluid-solid interaction model

  • ZHAO Jiang1,2,YU Jianfeng1,2,LOU Qi1,2
Author information +
文章历史 +

摘要

针对由流体引发的T型管振动问题,采用基于双向流固耦合的模态分析方法,对流体作用下的T型管模态进行分析;在双向流固耦合基础上分析流体压强,流体速度和流体密度对管道固有频率的影响;通过分析管道在流体作用下的应力和变形情况,对T型管振动剧烈的结合部位进行谐响应分析。研究表明:基于双向流固耦合的模态分析可以较确切地反映内部流体作用下的管道模态;在各因素中,流体压强对管道固有频率影响是最大的;当激励频率为第二阶(800Hz)和第八阶(1060Hz)固有频率时,管道的振动响应分别达到峰值。

Abstract

The vibration of a T-shaped pipe caused by fluid flow was investigated. The natural frequency of the T-shaped pipe under the action of fluid was analyzed based on the two-way fluid-solid coupling. The effects of fluid pressure, fluid velocity and fluid density on the modality of the pipeline were studied in consideration of the two-way fluid-solid coupling. The stress and deformation of the pipeline under the effect of fluid were analysed, and the vibration harmonic responses of the T-shaped pipe were investigated. The results show that the modal analysis based on the two-way fluid-structure coupling can accurately reflect the modality of the pipeline under the action of internal fluid; the fluid pressure has the greatest influence on the natural frequency of the pipeline; the vibration response of the pipeline reaches peaks at the excitation frequency of 800 Hz and 1 060 Hz.

关键词

T型管 / 模态分析 / 有限元分析 / 谐响应分析

Key words

 T-shaped pipe / modal analysis / finite element analysis / harmonic response analysis

引用本文

导出引用
赵江 1,2,俞建峰 1,2,楼琦1,2. 基于流固耦合的T型管振动特性分析[J]. 振动与冲击, 2019, 38(22): 117-123
ZHAO Jiang1,2,YU Jianfeng1,2,LOU Qi1,2. Modal analysis of T-shaped pipes based on a fluid-solid interaction model[J]. Journal of Vibration and Shock, 2019, 38(22): 117-123

参考文献

[1]Liang Z, Li S S, Tian J L, et al. Vibration cause analysis and elimination of reciprocating compressor inlet pipelines[J]. Engineering Failure Analysis, 2015, 48:272-282.
[2]王武,陈涛,杨帅,等. T型结构压力管道流固耦合模拟与试验验证[J]. 中国安全生产科学技术, 2017,13(10):5-11.
WANG Wu, CHEN Tao, YANG Shuai, et al. Simulation and experimental verification on fluid-structure interaction of T-shaped pressure pipeline[J]. Journal of Safety Science and Technology, 2017,13(10):5-11.
[3]郝文乾,谢佳苗,赵翔,等. 薄壁正弦波纹管在轴向载荷作用下的理论研究[J]. 振动与冲击, 2018,37(07):96-101.
HAO Wen-qian, XIE Jia-miao, ZHAO Xiang, et al. Theoretical analysis of a thin-walled sinusoid corrugated tube under axial loading[J]. Journal of Vibration and Shock, 2018,37(07):96-101.
[4]阳洋,吕良,李建雷,等. 基于统计矩的确定及不确定性结构损伤识别理论在振动台试验中的应用[J]. 建筑结构学报, 2018,39(04):167-173.
YANG Yang, LU Liang, LI Jian-lei, et al. Structural damage identification with and without uncertainty condition for shaking table test based on statistical moment theory[J]. Journal of Building Structures, 2018,39(04):167-173.
[5] František T, František Š, Róbert H. Identification of pipes damages on gas compressor stations by modal analysis methods[J]. Engineering Failure Analysis, 2013, 27:213-224.
[6]Liu B X, Feng J M, Wang Z Z. Attenuation of Gas Pulsation in a Reciprocating Compressor Piping System by Using a Volume-Choke-Volume Filter[J]. Journal of Vibration and Acoustics, 2012,134(5): 051002-051002-9.
[7]陈振华, 卢超, 陆铭慧. 基于声-超声检测的薄钢板多焊点结构完整性评价技术[J]. 机械工程学报, 2013,49(16):57-61.
CHEN Zhen-hua, LU Chao, LU Ming-hui. Integrity Evaluation on Spot Welded Construction of Thin Steel Sheet
Based on Acousto-ultrasonic Technique[J]. Journal of Mechanical Engineering, 2013,49(16):57-61.
[8] Huang Yi-Min, Liu Yong-Shou. Natural frequency analysis of fluid conveying pipeline with different boundary conditions[J]. Nuclear Engineering and Design, 2010, 240(3): 461-467.
[9] Dai H L, Wang L, Qian Q J. Vibration analysis of three-dimensional pipes conveying fluid with consideration of steady combined force by transfer matrix method[J]. Applied Mathematics and Computation, 2012,219(5): 2453-2464,
[10]付永领, 荆慧强. 弯管转角对液压管道振动特性影响分析[J].振动与冲击,2013,32(13):165-169.
FU Yong-Ling, JING Hui-Qiang. Elbow angle effect on hydraulic pipeline vibration characteristics[J]. Journal of Vibration and Shock, 2013,32(13):165-169.
[11]俞树荣, 马璐, 余龙. 弯曲输流管道流固耦合动力特性分析[J]. 噪声与振动控制, 2015,35(04):43-47.
YU Shu-Rong , MA Lu , YU Long. Analysis of Dynamic Characteristics of Fluid-structure Interaction in Curved Infusion Pipelines[J]. Noise and Vibration Control,2015,35(04):43-47.
[12]曹源, 金先龙, 王建炜, 等. T型管及管内流体动态响应仿真研究[J]. 振动与冲击, 2010,29(04):54-58+230.
CAO Yuan , JIN Xian-long , WANG Jian-wei, et al. Numerical simmlation for dynamic response of a T-shape pipe and fluid inside[J]. Journal of Vibration and Shock, 2010,29(04):54-58+230.
[13]陈江林, 吕宏兴, 石喜, 等. T型三通管水力特性的数值模拟与试验研究[J]. 农业工程学报, 2012,28(05):73-77.
CHEN Jiang-lin, LU Hong-xing, Shi Xi,at al. Numerical simulation and experimental study on hydrodynamic
characteristics of T-type pipes[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012,28(05):73-77.
[14]Herbert Niessner, Ennio Codan. Significance of truckenbrodt’s energy and momentum coefficients for loss calculation in ramifird pipe systems[J]. Journal of Water Resources Planning And Management, 2010, 217(10): 449-450.
[15]尹庭赟, 裴吉, 袁寿其, 等. 余热排出泵叶轮流固耦合特性分析[J]. 农业工程学报, 2017,33(09):76-83.
YIN Ting-yun, PEI Ji,YUAN Shou-qi,at al. Analysis of fluid-structure interaction characteristics for impeller of residual heat removal pump[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017,33(09):76-83.
[16]陆春月, 寇子明, 吴娟, 等. 液压波动激励下的充液管道动力学特性[J]. 华中科技大学学报(自然科学版), 2013,41(05):17-22.
LU Chun-yue, KOU Zi-ming, WU Juan, at al. Dynamic characteristics of pipes conveying fluid excited by hydrulic fluctuation[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2013,41(05):17-22.
[17]许伟伟, 武博, 吴大转,等. 非稳定流体与U形管路耦合振动特性研究[J]. 高校化学工程学报, 2012,26(05):770-774.
XU Wei-wei, WU Bo, WU Da-zhuan,at al. Vibration Investigation of U Pipe Interacted with Unsteady Fluid[J]. Journal of Chemical Engineering of Chinese Universities, 2012,26(05):770-774.
[18] Xu W W, Wu D Z, Wang L Q. Coupling analysis of fluid-structure interaction in fluid-filled elbow pipe[J]. Earth and Environmental Science, 2012,15: 062001-1-062001-7.
[19]权凌霄, 骆洪亮, 张晋. 斜轴式轴向柱塞泵壳体结构振动谐响应分析[J]. 液压与气动, 2014(05):33-39.
QUAN Ling-xiao,LUO Hong-liang,ZHANG Jin. Harmonic Response Analysis of Axial Plunger Pump Shell Structure[J]. Chinese Hydraulics & Pneumatics, 2014(05):33-39.
[20]Mayank K,  Malahem M, Govender I, at al. Coupled DEM-CFD Model to Predict the Tumbling Mill Dynamics[J]. Procedia IUTAM, 2015, 15: 139-149.
[21]宝鑫, 刘晶波. 考虑流-固耦合效应的含液容器动力响应有限元分析方法[J]. 核动力工程, 2017,38(02):111-114.
Bao Xin,  Liu Jing-bo. Dynamic Finite Element Analysis Methods for Liquid Container Considering Fluid-Structure Interaction[J]. Nuclear Power Engineering, 2017,38(02):111-114.
[22]包家汉, 潘紫微, 徐培民,等. 基于流固耦合的泵组管系振动分析[J]. 排灌机械工程学报, 2010,28(04):349-353.
BAO Jia-han1,PAN Zi-wei,XU Pei-min, at al. Vibration analysis on a pipe system of pumps based on
fluid-structure interaction[J]. Journal of Drainage and Irrigation Machinery Engineering, 2010,28(04):349-353.
[23]吕振. 基于ANSYS Workbench的航空发动机液压管路系统流固耦合振动研究[D]. 东北大学,  2014.
LU Zhen. Based on fluid-structure compling vibration ANSYS Workbench aviation engine hydraulic piping systems[D]. Northeastern University, 2014.
[24] Zhu H J, Zhang W L, Feng G, at al. Fluid–structure interaction computational analysis of flow field shear stress distribution and deformation of three-limb pipe[J]. Engineering Failure Analysis, 2014, 42, 252-262.

PDF(1864 KB)

606

Accesses

0

Citation

Detail

段落导航
相关文章

/