有攻角方柱涡致振动的数值研究

汤兆烈,周本谋

振动与冲击 ›› 2019, Vol. 38 ›› Issue (22) : 124-129.

PDF(1334 KB)
PDF(1334 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (22) : 124-129.
论文

有攻角方柱涡致振动的数值研究

  • 汤兆烈 ,周本谋
作者信息 +

Numerical simulation of the vortex-induced vibration of a square cylinder at the angle of attack

  • TANG Zhaolie,ZHOU Benmou
Author information +
文章历史 +

摘要

使用谱元法对弹性支承的有攻角方柱涡致振动进行了数值计算,分析了系统弹性刚度与质量比对振动响应的影响。数值计算得到了实验中发现的“高分支”。首先研究了质量比的影响,发现质量比对高分支的范围影响很大。对物体位移以及升力系数随时间变化曲线进行快速傅里叶变换,得到它们的频率组成。将质量比、系统刚度、以及不同主要频率成分组成一系列有效刚度。通过计算一系列不同系统刚度及质量比发现高分支大致分布在第一有效刚度大于零且第二有效刚度小于零的区域内。同时存在着一个临界质量,大于该质量,高分支消失。另外,还发现了高分支的基本频率可以是1/2St,1/3St,1/4St.

Abstract

Vortex-induced vibrations(VIV) of an elastically mounted square cylinder at the angle of attack were studied numerically using the spectral-element method to study the system response as a function of the spring stiffness and the mass ratio.The subharmonic mode of vibration dubbed the “higher branch” found in the experiment before was obtained.The effects of mass ratio were studied and it is found that the mass ratio has a great influence on the range of higher branch. The frequency contents of time traces of displacement and lift coefficient were obtained by taking Fourier transform.The main frequency contents, mass ratios and stiffness were composed into a series of effective rigidities. The higher branch exists in the regime that the first effective rigidity greater than zero and the second effective rigidity less than zero. There is a critical mass ratio and when the mass ratio is greater than that, the higher branch disappears. In addition, the fundamental frequency can be 1/2St,1/3St,1/4St.

关键词

涡致振动 / 方柱 / 质量比 / 高分支

Key words

 vortex-induced vibration / square cylinder / mass ratio;higher branch

引用本文

导出引用
汤兆烈,周本谋. 有攻角方柱涡致振动的数值研究[J]. 振动与冲击, 2019, 38(22): 124-129
TANG Zhaolie,ZHOU Benmou. Numerical simulation of the vortex-induced vibration of a square cylinder at the angle of attack[J]. Journal of Vibration and Shock, 2019, 38(22): 124-129

参考文献

[1] Bernitsas M M. OMAE06-92645 VIVACE (Vortex Induced Vibration  for Aquatic Clean Energy): A NEW CONCEPT IN GENERATION OF CLEAN AND RENEWABLE ENERGY FROM FLUID FLOW[J]. Journal of Offshore Mechanics and Arctic Engineering, 2008, 130(4):619-637.
[2] Zhang B, Song B, Mao Z, et al. Numerical investigation on VIV energy harvesting of bluff bodies with different cross sections in tandem arrangement[J]. Energy, 2017,133:723-736.
[3] Andrianne T, Aryoputro R P, Laurent P, et al. Energy harvesting from different aeroelastic instabilities of a square cylinder[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 172:164-169.
[4] 赵兴强, 王军雷, 蔡骏,等. 基于风致振动效应的微型风能收集器研究现状[J]. 振动与冲击, 2017, 36(16):106-112.
ZHAO Xingqiang, WANG Junlei, CAI Jun, et al. A review on micro wind energy harvesters based wind induced vibration[J]. Journal of vibration and shock, 2017, 36(16):106-112. 
[5] Bearman P W. Circular cylinder wakes and vortex-induced vibrations[J]. Journal of Fluids and Structures, 2011, 27(5–6):648-658.
[6] Joly A, Etienne S, Pelletier D. Galloping of square cylinders in cross-flow at low Reynolds numbers[J]. Journal of Fluids and Structures, 2012, 28(1):232-243.
[7] Mannini C, Massai T, Marra A M. Modeling the interference of vortex-induced vibration and galloping for a slender rectangular prism[J]. Journal of Sound and Vibration, 2018, 419:493-509.
[8] 张军, 练继建, 刘昉,等. 正三棱柱流致振动试验研究[J]. 振动与冲击, 2016(20):17-23.
ZHANG Jun, LIAN Jijian, LIU Fang, et al. Experimental investigation on flow induced motion of an equilateral triangle prism [J]. Journal of vibration and shock, 2016(20):17-23.
[9] Khalak A, Williamson C H K. FLUID FORCES AND DYNAMICS OF A HYDROELASTIC STRUCTURE WITH VERY LOW MASS AND DAMPING[J]. Journal of Fluids and Structures, 1997, 11(8):973-982.
[10] Nemes, András, Zhao, et al. The interaction between flow-induced vibration mechanisms of a square cylinder with varying angles of attack[J]. Journal of Fluid Mechanics, 2012, 710(5):102-130.
[11] Zhao J, Leontini J S, David L J, et al. Fluid-structure interaction of a square cylinder at different angles of attack[J]. Journal of Fluid Mechanics, 2014, 747(747):688-721.
[12] Banafsheh S A, Carlson D W, Yahya M S. Vortex-induced vibration and galloping of prisms with triangular cross-sections[J]. Journal of Fluid Mechanics, 2017, 817:590-618.
[13] Leontini J S, M.D. Griffith, Lojacono D, et al. The flow-induced vibration of an elliptical cross-section at varying angles of attack[J]. Journal of Fluids and Structures, 2018, 78:356-373.
[14] Zhao M, Cheng L, Zhou T. Numerical simulation of vortex-induced vibration of a square cylinder at a low Reynolds number[J]. Physics of Fluids, 2013, 25(2):455-472.
[15] Cui Z, Zhao M, Teng B, et al. Two-dimensional numerical study of vortex-induced vibration and galloping of square and rectangular cylinders in steady flow[J]. Ocean Engineering, 2015, 106(5):189-206.
[16] Leontini J S, Thompson M C. Vortex-induced vibrations of a diamond cross-section: Sensitivity to corner sharpness[J]. Journal of  Fluids and Structures, 2013, 39(5):371-390.
[17] Govardhan R, Williamson C H K. Modes of vortex formation and frequency response of a freely vibrating cylinder[J]. Journal of Fluid Mechanics, 2000, 420(420):85-130.
[18] Sen S, Mittal S. Effect of mass ratio on free vibrations of a square cylinder at low Reynolds numbers[J]. Journal of Fluids and Structures, 2015, 54(5):661-678.
[19] 练继建, 燕翔, 刘昉,等. 正方形截面振子在不同来流方向的单自由度流致振动特性研究[J]. 振动与冲击, 2017, 36(15):29-35.
LIAN Jijian, YAN Xiang, LIU Fang, et al. Flow induced vibration characteristics of a single-DOF square cylinder at different incident angles [J]. Journal of vibration and shock, 2017, 36(15):29-35.
[20] Cantwell C D, Moxey D, Comerford A, et al. Nektar++: An open-source spectral/hp element framework[J]. Computer Physics Communications, 2015, 192:205-219.
[21] Navrose, Mittal S. A new regime of multiple states in free vibration of a cylinder at low Re[J]. Journal of Fluids and Structures, 2017, 68:310-321.
[22] Shiels D, Leonard A, Roshko A. FLOW-INDUCED VIBRATION OF A CIRCULAR CYLINDER AT LIMITING STRUCTURAL PARAMETERS[J]. Journal of Fluids and Structures, 2001, 15(1):3-21.

PDF(1334 KB)

867

Accesses

0

Citation

Detail

段落导航
相关文章

/