竖向近断层地震下隔震结构-非结构系统耦合控制研究

刘德稳1,赵洁1,刘阳2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (22) : 130-136.

PDF(1994 KB)
PDF(1994 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (22) : 130-136.
论文

竖向近断层地震下隔震结构-非结构系统耦合控制研究

  • 刘德稳1,赵洁1,刘阳2
作者信息 +

Seismic response control of a base isolated structure-nonstructural coupling system under near-fault vertical earthquakes

  • LIU Dewen1, ZHAO Jie1,  LIU Yang2
Author information +
文章历史 +

摘要

竖向近断层地震动作用下易造成隔震结构内部非结构系统产生地震响应放大现象。为研究近断层地震动下隔震结构-内部非结构的动力反应控制机理,建立了竖向地震动下隔震结构-内部非结构耦合系统分析模型。采用非线性时程反应分析方法分析了附加竖向准零刚度系统的非结构元件的响应控制效果。基于能量分析方法建立了竖向近断层地震动作用下隔震结构-内部非结构耦合系统能量平衡方程。研究结果表明对于不同自振频率的隔震系统,当采用竖向准零刚度对非结构元件进行地震响应控制时,减震效果较好。有控系统的竖向弹性恢复能和阻尼耗能要大于无控结构,通过选取合适的阻尼比可有效控制非结构元件的地震响应。

Abstract

Near-fault vertical ground motions tend to cause the amplification of seismic responses of nonstructural components in an isolated structure. To study the mechanism of dynamic response control for nonstructural components in the isolated structure under near-fault vertical ground motions, a model for the base isolated structure-nonstructural coupling system was established. The seismic response control effect of nonstructural components with the quasi zero stiffness of isolation system was analyzed by using the non-linear time history response analysis method. Based on the energy analysis method, the energy balance equation for the base isolated structure-nonstructural coupling system was established. The results show that when using the vertical quasi zero stiffness system, the seismic isolation efficiency of nonstructural components is remarkable for the base isolation system with different natural frequency. The vertical elastic recovery and damping energy of the seismic isolated structure model with quasi zero stiffness are much bigger than those of the base isolated structure with fixed nonstructural component system. It is beneficial to control near-fault vertical seismic responses of nonstructural components by setting reasonable damping ratio.

关键词

竖向近断层地震动 / 隔震结构-非结构耦合系统 / 地震响应控制

Key words

near-fault vertical ground motion / base isolated structure-nonstructural coupling system / seismic response control

引用本文

导出引用
刘德稳1,赵洁1,刘阳2. 竖向近断层地震下隔震结构-非结构系统耦合控制研究[J]. 振动与冲击, 2019, 38(22): 130-136
LIU Dewen1, ZHAO Jie1, LIU Yang2 . Seismic response control of a base isolated structure-nonstructural coupling system under near-fault vertical earthquakes[J]. Journal of Vibration and Shock, 2019, 38(22): 130-136

参考文献

[1] Nagarajaiah S, Xiaohong S. Response of base-isolated USC hospital building in Northridge earthquake [J]. Journal of Structural Engineering, 2000, 126(10): 1177-1186.
[2] 中日联合考察团. 东日本大地震灾害考察报告[J]. 建筑结构, 2012,42(4): 1-20.
Sino-Japanese joint miss. Inspection report of the disaster of the East Japan earthquake by Sino-Japanese joint miss[J]. Building Structure, , 2012, 42(4): 1-20.
[3] Soroushian S, Ryan K L, Maragakis M, et al. Seismic response of ceiling/sprinkler piping nonstructural systems in NEES TIPS/NEES nonstructural/NIED collaborative tests on a full scale 5-story building[C]//Structures Congress 2012. 2012: 1315-1326.
[4] 秦权, 聂宇. 非结构构件和设备的抗震设计和简化计算方法[J]. 建筑结构学报, 2001, 22(3): 15-20.
QIN Quan, NIE Yu. Seismic Design and Simplified Analytical Method of Nonstructural Components and Equipment in Buildings[J]. Journal of Building Structures, 2001, 22(3): 15-20.
[5] 赵亚敏, 苏经宇, 周锡元, 隋允康. 碟形弹簧竖向隔震结构振动台试验及数值模拟研究[J]. 建筑结构学报, 2009, 29(6): 99-106.
ZHAO Yamin, SU Jingyu, ZHOU Xiyuan, SUI Yunkang. Shaking table test and numerical analysis of vertical-isolated building model with combined disk spring bearing[J]. Journal of Building Structures, 2009, 29(6): 99-106.
[6] 颜学渊, 张永山, 王焕定, 魏陆顺. 三类三维隔震抗倾覆支座力学性能试验研究[J]. 振动与冲击, 2009, 28(10): 49-53.
YAN Xueyuan, ZHANG Yongshan, WANG Huanding, WEI Lushun. Experimental study on mechanical properties of three kinds of three-dimensional base isolation and overturn-resistance devices[J]. JOURNAL OF VIBRATION AND SHOCK, 2009, 28(10): 49-53.
[7] 贾俊峰, 欧进萍, 刘明, 张哲. 新型三维隔震装置力学性能试验研究[J]. 土木建筑与环境工程, 2012, 34(1): 29-34.
JIA Jun-feng, OU Jin-ping, LIU Ming, ZHANG Zhe. Mechanical Performance Tests of a Novel Three-dimensional Isolation Bearing[J]. Journal of Civil, Architectural & Environmental Engineering , 2012, 34(1): 29-34.
[8] 王涛, 王飞, 侯钢领, 丁路通. 核电厂隔震结构的振动台试验研究[J]. 工程力学, 2013, 31(10): 62-68.
WANG Tao,WANG Fei, HOU Gangling, DING Lutong. SHAKING TABLE TESTS ON BASE-ISOLATED NUCLEAR POWER PLANT[J]. ENGINEERING MECHANICS, 2013, 31(10): 62-68.
[9] 魏陆顺, 刘雷斐, 梁欢文. 三维隔震振动台试验研究[J]. 土木工程学报, 2014, 47(3): 33-38.
Wei Lushun, Liu Leifei, Liang Huanwen. Experimental study on three-dimensional seismic isolation[J]. CHINA CIVIL ENGINEERING JOURNAL, 2014, 47(3): 33-38.
[10] 刘文光, 余宏宝, IMAMMOUSTAFAI,何文福. 倾斜旋转型三维隔震装置的力学模型和竖向性能试验研究[J]. 振动与冲击, 2017, 36(9):68-73.
LIU Wenguang, YU Hongbao,IMAM MOUSTAFA I, HE Tests for mechanical model of an inclined rotional three-dimensional seismic isolation device and its vertical performance[J]. JOURNAL OF VIBRATION AND SHOCK, 2017, 36(9):68-73.
[11] Tomizawa T, Takahashi O, Aida H, et al. Vibration test in a Building named" Chisuikan" using Three-dimensional Seismic Isolation System[C]. //The 15th World Conference on Earthquake Engineering January. 2012.
[12] Vu B, Unal M, Warn G P, et al. A distributed flexibility and damping strategy to control vertical accelerations in base-isolated buildings[J]. Structural Control and Health Monitoring, 2014, 21(4): 503-521.
[13] Alabuzhev P,Gritchin A,Kim L,et al. Vibration protectingand measuring systems with quasi-zero stiffness[M]. USA: Hemisphere Publishing Corporation,1989.
[14] Carrella A, Brennan M J, Waters T P. Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic[J]. Journal of Sound and Vibration, 2007, 301(3): 678-689.
[15] Shaw A D, Neild S A, Wagg D J. Dynamic analysis of high static low dynamic stiffness vibration isolation mounts[J]. Journal of Sound and Vibration, 2013, 332(6): 1437-1455..
[16] Ahn H J, Lim S H, Park C. An integrated design of quasi-zero stiffness mechanism[J]. Journal of Mechanical Science and Technology, 2016, 30(3): 1071-1075.
[17] Ozbulut O E, Hurlebaus S. Energy-balance assessment of shape memory alloy-based seismic isolation devices[J]. Smart Structures and Systems, 2011, 8(4): 399-412..
[18] 杨迪雄, 赵岩. 近断层地震动破裂向前方向性与滑冲效应对隔震建筑结构抗震性能的影响[J]. 地震学报, 2010, 32(5):579-587.
YANG Dixion,ZHAO Yan. Effects of rupture forward directivity and fling step of near-fault ground motions on seismic performance of base-isolated building structure[J]. ACTA SEISMOLOGICA SINICA, 2010, 32(5):579-587.
[19] 贺秋梅, 李小军, 杨宇. 近断层速度脉冲型地震动作用基础隔震建筑位移反应分析[J]. 应用基础与工程科学学报, 2014, 22(1):1-13.
HE Qiumei,LI Xiaojun,YANG Yu. Displacement response anslysis of base-isolated buildings subjected to near-fault ground motions with velocity[J]. JOURNAL of BASIC SCIENCE AND ENGINEERING, 2014, 22(1):1-13.
[20] Warn G P, Vu B. Exploring the low shape factor concept to achieve three-dimensional seismic isolation[C]//20th analysis and computation specialty conference. 2012: 1-11.
[21] Furukawa S, Sato E, Shi Y, et al. Full-scale shaking table test of a base-isolated medical facility subjected to vertical motions[J]. Earthquake Engineering & Structural Dynamics, 2013, 42(13): 1931-1949.

PDF(1994 KB)

Accesses

Citation

Detail

段落导航
相关文章

/