基于自适应最大相关峭度解卷积的滚动轴承多故障诊断

胡爱军,赵军

振动与冲击 ›› 2019, Vol. 38 ›› Issue (22) : 171-177.

PDF(2426 KB)
PDF(2426 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (22) : 171-177.
论文

基于自适应最大相关峭度解卷积的滚动轴承多故障诊断

  • 胡爱军,赵军
作者信息 +

Diagnosis of multiple faults in rolling bearings based on adaptive maximum correlated kurtosis deconvolution

  • HU Aijun, ZHAO Jun
Author information +
文章历史 +

摘要

滚动轴承存在多个故障时,由于各故障响应之间相互干扰,会使包络谱诊断效果不佳。最大相关峭度解卷积(MCKD)是用于增强周期性脉冲的有效工具,然而,MCKD的滤波器长度参数和移位数需要人工设定,并且在复杂条件下运行的轴承对参数的要求较高。针对此情况,提出了一种自适应最大相关峭度解卷积的滚动轴承多故障诊断方法。该方法以最大相关峭度解卷积信号的包络谱的谱相关峭度值作为目标函数,采用人工鱼群算法,自适应得到MCKD的最优参数,利用参数优化的最大相关峭度解卷积实现滚动轴承多故障分析。滚动轴承多故障仿真及轴承内圈多故障实验分析表明,该方法可以有效提取故障特征,实现滚动轴承多故障的准确诊断。

Abstract

When rolling bearings are in the state of multiple faults, the envelope spectrum diagnosis effect will be poor due to the mutual interference between various faults responses. The maximum correlated kurtosis deconvolution (MCKD) is an effective tool for enhancing periodic pulses. However, the filter length parameter and the shift number of MCKD need to be set manually, and the bearing operation under complex conditions wants higher requirements on parameters. For this situation, a multiple faults diagnosis method for rolling bearings based on adaptive maximum correlated kurtosis deconvolution was proposed. In the method, the spectral correlation kurtosis value of the envelope spectrum of deconvolution signal was used as an  objective function, applying the artificial fish swarm algorithm to get the optimal parameters of MCKD self-adaptively. Then the fault signal was processed by a maximum correlated kurtosis deconvolution algorithm with optimized parameters. The results of multi-faults simulations and bearing inner ring multiple faults experiments prove that the method can extract fault features effectively and achieve the diagnosis of multiple faults of rolling bearings accurately.

关键词

滚动轴承 / 多故障 / 人工鱼群算法 / 自适应 / 最大相关峭度解卷积

Key words

rolling bearing / multiple faults / artificial fish swarm algorithm / Adaptive / maximum correlation kurtosis deconvolution

引用本文

导出引用
胡爱军,赵军. 基于自适应最大相关峭度解卷积的滚动轴承多故障诊断[J]. 振动与冲击, 2019, 38(22): 171-177
HU Aijun, ZHAO Jun. Diagnosis of multiple faults in rolling bearings based on adaptive maximum correlated kurtosis deconvolution[J]. Journal of Vibration and Shock, 2019, 38(22): 171-177

参考文献

[1] 刘嘉敏,刘军委,彭玲.单通道旋转机械复合故障信号分离及诊断[J].重庆大学学报:自然科学版,2017,40(7):25-31.
Liu Jia-min,Liu Jun-wei,Peng Ling.Blind source separation and fault diagnosis of Single-channel rotating mechanical compound fault signal[J].Journal of Chongqing University,2017.
[2] Peled R,Braun S,Zacksenhouse M.A blind deconvolution separation of multiple sources,with application to bearing diagnostics[J].Mechanical Systems and Signal Processing,2005,19(6):1181-1195.
[3] Wang Y,Liang M.An adaptive SK technique and its application for fault detection of rolling element bearings[J].Mechanical Systems and Signal Processing,2011,25(5):1750-1764.
[4] 明安波,褚福磊,张炜.滚动轴承复合故障特征分离的小波-频谱自相关方法[J].机械工程学报,2013, 49(3):80-87.
Ming An-bo,Chu Fu-lei,Zhang Wei.Compound fault features separation of rolling element bearing based on the wavelet decomposition and spectrum auto-correlation [J].Journal of Mechanical Engineering,2013,49(3):80.
[5] http://www.nskeurope.com/damage-by-type-129.htm
[6] Wang Y,Liang M.Identification of multiple transient faults based on the adaptive spectral kurtosis method[J].Journal of Sound and Vibration,2012,331(2):470-486.
[7] Mcdonald G L,Zhao Q,Zuo M J.Maximum correlated Kurtosis deconvolution and application on gear tooth chip fault detection [J].Mechanical Systems and Signal Processing,2012,33(1):237-255.
[8] 唐贵基,王晓龙.自适应最大相关峭度解卷积方法及其在轴承早期故障诊断中的应用[J].中国电机工程学报,2015,35(6):1436-1444.
Tang Gui-ji,Wang Xiao-long.Adaptive maximum correlated kurtosis deconvolution method and its application on incipient Fault diagnosis of bearing [J].Proceedings of the CSEE,2015,35(6):1436-1444.
[9] 顾晓辉,刘永强,廖英英.一种改进的峭度图方法及其在复杂干扰下轴承故障诊断中的应用[J].振动与冲击,2017,36(23):187-193.
Gu Xiao-hui,Liu Yong-qiang,Liao Ying-ying.An improved kurtogram method and its application in fault diagnosis of rolling element bearings under complex interferences[J].Journal of Vibration and Shock,2017.
[10] Li X,Shao Z and Qian J.An Optimizing method based on autonomous animals:fish-swarm algorithm Systems Engineering.System Engineering Theory and Practice 2002; 11:32-38.
[11] Shen W,Guo X,Wu C,et al.Forecasting stock indices using rad•ial basis function neural networks optimized by artificial fish swarm algorithm[J].Knowledge-Based Systems,2011,24(3):378-385.
[12] 陈广洲,徐晓春,汪家权,等.改进的人工鱼群算法在水质参数识别中的应用[J].水力发电学报,2010, 29(2):108-113.
Chen Guang-zhou,Xu Xiao-chun,Wang Jia-quan,et al.Application of a modified artificial fish swarm algorithm to identification of water quality parameters [J]. Journal of Hydroelectric Engineering,2010,29(2):108-113.
[13] Zhu J,Wang C,Hu Z,et al.Adaptive variational mode decomposition based on artificial fish swarm algorithm for fault diagnosis of rolling bearings[J].ARCHIVE Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science 1989-1996 (vols 203-210), 2015,231(4).
[14] Antoni J,Bonnardot F,Raad A,et al.Cyclostationary modelling of rotating machine vibration signals [J].Mechanical Systems and Signal Processing,2004,18(6):1285-1314.
[15] 丁康,黄志东,林慧斌.一种谱峭度和Morlet小波的滚动轴承微弱故障诊断方法[J].振动工程学报,2014,27(1):128-135.
Ding Kang,Huang Zhi-dong,Lin Hui-bin.A weak fault diagnosis method for rolling element bearings based on Morlet wavelet and spectral kurtosis[J].Journal of Vibration Engineering,2014,27(1):128-135.

PDF(2426 KB)

1347

Accesses

0

Citation

Detail

段落导航
相关文章

/