基于Weibull分布的岸桥铰点退化特征提取方法研究

侯美慧,胡雄,王冰,孙德建

振动与冲击 ›› 2019, Vol. 38 ›› Issue (22) : 198-203.

PDF(2340 KB)
PDF(2340 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (22) : 198-203.
论文

基于Weibull分布的岸桥铰点退化特征提取方法研究

  • 侯美慧 , 胡雄 , 王冰 , 孙德建
作者信息 +

Degradation feature extraction for the ship-to-shore crane turning point based on Weibull distribution

  • HOU Meihui,HU Xiong,WANG Bing,SUN Dejian
Author information +
文章历史 +

摘要

港口岸桥结构复杂,铰点是小车轨道的关键连接部件。长期承受高速、重载下装卸作业带来的冲击,铰点振动信号具有明显的非线性与非平稳特征。为了准确分析岸桥铰点的性能退化状态,提出一种基于Weibull分布的铰点退化特征提取方法。该方法首先采用局部最小值法滤除本底噪声,然后对去噪后的数据建立Weibull分布模型,并应用EDF统计量验证分布的可靠性。提取Weibull分布模型的尺度参数和形状参数,以此作为铰点的性能退化特征参数。采用实际工况下采集的全寿命铰点振动信号进行实例分析,结果表明了该方法的有效性。

Abstract

The structure of the ship-to-shore (STS) crane is complex and the turning point is the key connection component to the trolley structure. The turning point vibration signal is of nonlinear and non-stationary characteristics evidently because of the long-term impact under high-speed heavy loading and unloading operations. Aiming at analyzing the performance degradation condition accurately, a degradation feature extraction method based on Weibull distribution was proposed. The local minimum method was used to filter out the background noise, then a Weibull model, was established and the EDF statistics was employed to verify the reliability of the distribution. The scale parameters and shape parameters were extracted and adopted as characteristic parameters. The whole lifetime test data of a turning point under actual working conditions were taken in an examplic analysis, the results show the effectiveness of the method.

关键词

岸桥铰点 / Weibull分布 / 性能退化 / 特征提取

Key words

ship-to-shore crane turning point / Weibull distribution / performance degradation / feature extraction

引用本文

导出引用
侯美慧,胡雄,王冰,孙德建. 基于Weibull分布的岸桥铰点退化特征提取方法研究[J]. 振动与冲击, 2019, 38(22): 198-203
HOU Meihui,HU Xiong,WANG Bing,SUN Dejian. Degradation feature extraction for the ship-to-shore crane turning point based on Weibull distribution[J]. Journal of Vibration and Shock, 2019, 38(22): 198-203

参考文献

[1] Arena A, Casalotti A, Lacarbonara W, et al. Dynamics of container cranes: three-dimensional modeling, full-scale experiments, and identification[J]. International Journal of Mechanical Sciences, 2015, 93: 8-21.
[2] 黄炳林. 岸桥小车轨道保养维修方法[J]. 集装箱化, 2012, 23(5): 24-26.
HUANG Binglin. Shore bridge crane trolley track maintenance method[J]. Containerization, 2012, 23(5): 24-26.
[3] 成斌, 余水宝. 岸桥模型轨道状态的小波包分析技术[J]. 仪器仪表学报, 2005 (z1): 779-780.
CHENG Bin, YU Shuibao. Condition of tracks of quayside container crane model applied with wavelet packet analysis[J]. Chinese Journal of Scientific Instrument, 2005 (z1): 779-780.
[4] 童民慧, 王悦民, 邱惠清. 弹性体基础变形下的岸桥车梁耦合振动[J]. 振动. 测试与诊断, 2017, 37(6): 1136-1140.
TONG Minhui, WANG Yuemin, QIU Huiqing. Container crane structural elastomeric deformation under the basis of trolley boom coupling vibration response study[J]. Journal of Vibration, Measurement & Diagnosis, 2017, 37(6): 1136-1140.
[5] 王志欣, 胡雄, 陈兆能. 集装箱起重机机械状态监测信息的关联规则挖掘[J]. 上海交通大学学报, 2006, 40(12): 2075-2080.
WANG Zhixin, HU Xiong, CHEN Zhaoneng. The mining association rules on the monitoring data of container crane health conditions[J]. Journal of Shanghai Jiaotong University, 2006, 40(12): 2075-2080.
[6] 刘鹏, 李洪儒, 许葆华. 基于数学形态梯度谱熵的性能退化特征提取方法及其应用[J]. 振动与冲击, 2016, 35(16): 86-90.
LIU Peng, LI Hongru, XU Baohua. A performance degradation feature extraction method and its application based on mathematical morphological gradient spectrum entropy[J]. Journal of Vibration and Shock, 2016, 35(16): 86-90.
[7] 王冰, 王微, 胡雄, 等. 基于 GG 模糊聚类的退化状态识别方法简[J]. 仪器仪表学报, 2018 (3): 21-28.
WANG Bing, WANG Wei, HU Xiong. Degradation condition recognition method based on Gath-Geva fuzzy clustering[J]. Chinese Journal of Scientific Instrument, 2018 (3): 21-28.
[8] 田再克, 李洪儒, 孙健, 等. 基于改进 MF-DFA 的液压泵退化特征提取方法[J]. 振动. 测试与诊断, 2017, 37(1): 140-146.
TIAN Zaike, LI Hongru, SUN Jian. Degradation Feature Extraction of Hydraulic Pump Based on Improved MF-DFA[J]. Journal of Vibration, Measurement & Diagnosis, 2017, 37(1): 140-146.
[9] 邓传月. 岸桥小车轨道振动特征分析及状态分类研究[D]. 上海: 上海海事大学, 2007.
DENG Chuanyue. Analysis on the characteristics of the vibration of the trolley track and state classification [D]. Shang hai: Shanghai Maritime University,2007.
[10] 陈昌, 汤宝平, 吕中亮. 基于威布尔分布及最小二乘支持向量机的滚动轴承退化趋势预测[J]. 振动与冲击, 2014, 33(20): 52-56.
CHEN Chang, TANG Baoping, LV Zhongliang. Degradation trend prediction of rolling bearings based on Weibull distribution and least squares support vector machine[J]. Journal of vibration and shock, 2014, 33(20): 52-56.
[11] 陈光宇, 张文, 张小民. 威布尔分布下系统全寿命周期成本建模与决策[J]. 系统工程理论与实践, 2016, 36(11): 2933-2940.
CHEN Guangyu, ZHANG Wen, ZHANG Xiaomin. Modeling and decision-making of system lifecycle costs under Weibull distribution[J]. Systems Engineering-Theory & Practice, 2016, 36(11): 2933-2940.
[12] 魏艳华, 王丙参, 孙永辉. 三参数威布尔分布贝叶斯估计的混合 Gibbs 算法[J]. 四川大学学报 (自然科学版), 2015, 2: 004.
Wei Yanhua, Wang Bingcan, Sun Yonghui. Mixed Gibbs algorithm of Bayesian estimation for three-parameter Weibull distribution[J]. Journal of Sichuan University(Natural Science Edition), 2015, 2: 004.
[13] Sen Y, Yu Z, Lei L. Reliability Analysis based on Weibull Distribution Model for Spreaders[J]. Intelligent Systems Conference 2017,7:494-498.
[14] Azad A K, Rasul M G, Islam R, et al. Analysis of wind energy prospect for power generation by three Weibull distribution methods[J]. Energy Procedia, 2015, 75: 722-727.
[15] Xu X, Ding X, Zhao S. New goodness-of-fit tests based on fiducial empirical distribution function[J]. Computational Statistics & Data Analysis, 2009, 53(4): 1132-1141.
[16] 王爱红, 徐格宁, 杨萍, 等. 桥式起重机起升载荷分布拟合与检验[J]. 机械强度, 2011, 33(6): 921-926.
WANG Aihong, XU Gening, YANG Ping. Bridge crane load distribution fitting and test[J]. Journal of Mechanical Strength,2011, 33(6): 921-926.
[17] Dragomiretskiy K, Zosso D. Variational mode decomposition[J]. IEEE transactions on signal processing, 2014, 62(3): 531-544.
 

PDF(2340 KB)

507

Accesses

0

Citation

Detail

段落导航
相关文章

/