一类分数阶分段光滑系统的非线性振动特性

王军1,申永军1,杨绍普1,温少芳2, 王美琪1

振动与冲击 ›› 2019, Vol. 38 ›› Issue (22) : 216-223.

PDF(1410 KB)
PDF(1410 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (22) : 216-223.
论文

一类分数阶分段光滑系统的非线性振动特性

  • 王军1,申永军1,杨绍普1,温少芳2, 王美琪1
作者信息 +

Nonlinear vibration performance of a piecewise smooth system with fractional-order derivative

  • WANG Jun1, SHEN Yongjun1, YANG Shaopu1, WEN Shaofang2, WANG Meiqi1
Author information +
文章历史 +

摘要

分析了一类含分数阶的单自由度分段光滑系统的振动特性。首先,建立了单自由度分数阶分段光滑系统的数学模型,采用平均法得到了系统的周期解,并与数值解进行了对比,二者吻合效果较好。其次分析了周期解幅频响应的跳跃现象及可能出现的鞍结分岔与擦边分岔,并利用数值仿真着重研究了分段刚度与阻尼、分数阶系数与阶次、分段间隙等参数对幅频响应及其稳定性的影响。最后基于奇异性理论对分岔方程进行了分析,得到了转迁集和系统分岔图,从而反映出该系统在不同参数区间的振动特性。

Abstract

The nonlinear vibration performance of a single-degree-of-freedom piecewise smooth system with fractional-order derivative was considered. A mathematic model of the piecewise smooth system was built. The periodic solution of the system was obtained by the averaging method, which was in good agreement with the numerical solution. The jump phenomenon of amplitude-frequency responses of the periodic solution and the possible saddle-node bifurcation and grazing bifurcation were analyzed. The effects of the piecewise stiffness and damping, fractional-order coefficient, order, and clearance on the amplitude-frequency curve and its stability region were studied.  By using the singularity theory, the bifurcation equation was established, and the transition sets and bifurcation behaviors were obtained, which could reflect the vibration characteristics of the system in different parameter ranges.

关键词

分数阶 / 分段光滑 / 周期解 / 稳定性 / 振动特性

Key words

fractional-order / piecewise smooth / periodic solution / stability / vibration characteristics

引用本文

导出引用
王军1,申永军1,杨绍普1,温少芳2, 王美琪1. 一类分数阶分段光滑系统的非线性振动特性[J]. 振动与冲击, 2019, 38(22): 216-223
WANG Jun1, SHEN Yongjun1, YANG Shaopu1, WEN Shaofang2, WANG Meiqi1. Nonlinear vibration performance of a piecewise smooth system with fractional-order derivative[J]. Journal of Vibration and Shock, 2019, 38(22): 216-223

参考文献

[1] 卫晓娟, 李宁洲, 丁旺才. 一类非光滑系统的无模型自适应混沌控制[J]. 振动工程学报, 2018,31(6): 996-1005.
WEI Xiao-juan, LI Ning-zhou, DING Wang-cai. Chaos control of a non-smooth system based on model-free adaptive control method[J]. Journal of Vibration Engineering, 2018,31(6): 996-1005.
[2] 张正娣, 彭淼, 曲子芳, 等. 频域两尺度下非光滑Duffing系统的簇发振荡及其机理分析[J]. 中国科学:物理学 力学 天文学, 2018, 48(11):22-33.
ZHANG Zheng-di, PENG Miao, QU Zi-fang, et al. Bursting oscillations and mechanism analysis in a non-smooth Duffing system with frequency domain of two time scales (in Chinese) [J]. Scientia Sinica(Physica,Mechanica & Astronomica), 2018, 48(11):22-33.
[3] 张思进, 王紧业, 文桂林. 含间隙齿轮碰振系统的全局动力学分析[J]. 动力学与控制学报, 2018, 16(2):129-135.
ZHANG Si-jin, WANG Jin-ye, WEN Gui-lin. Global dynamic analysis of gear vibration system with clearance[J], Journal of Dynamics and Control, 2018, 16(2):129-135.
[4] LI Shuang-bao, ZHAO Shuai-bei. The analytical method of studying subharmonic periodic orbits for planar piecewise-smooth systems with two switching manifolds[J]. International Journal of Dynamics and Control. 2019,7(1):23-35.
[5]HUANG Dong-mei XU Wei. Sensitivity analysis of primary resonances and bifurcations of a controlled piecewise-smooth system with negative stiffness[J].Communications in Nonlinear Science and Numerical Simulation,2017, 52:124-147 [6] 侯东晓, 刘彬, 时培明, 等. 分段非线性轧机辊系系统的分岔行为研究[J]. 振动与冲击, 2010, 29(12): 132-135, 243.
HOU Dong-xiao, LIU Bin, SHI Pei-ming, et al. Bifurcation of piecewise nonlinear roll system of rolling mill [J]. Journal of Vibration and Shock, 2010, 29(12): 132-135, 243.
[7] 刘浩然, 刘飞, 侯东晓, 等. 多非线性弹性约束下轧机辊系振动特性[J]. 机械工程学报, 2012, 48(9): 89-94.
LIU Hao-ran, LIU Fei, HOU Dong-xiao, et al. Vibration characteristics of mill rolls under multi-segment nonlinear elastic constraints[J]. Journal of Mechanical Engineering, 2012, 48(9): 89-94.
[8] 孙红磊. 分段线性悬挂系统车辆振动特性分析[D]. 兰州: 兰州交通大学, 2015.
SUN Hong-lei. Analysis of vehicle vibration character of the piecewise-linear suspension system[D]. Lanzhou: Lanzhou Jiaotong University, 2015.
[9] GAO X, Chen Q. Static and dynamic analysis of a high static and low dynamic stiness vibration isolator utilising the solid and liquid mixture[J]. Engineering Structures, 2015, 99: 205-213.
 [10] 孙会来, 金纯, 张文明, 等. 基于分数阶微积分的油气悬架建模与试验分析[J]. 振动与冲击, 2014, 33(17): 167-172.
SUN Hui-lai, JIN Chun,ZHANG Wen-ming, et al.Modeling and experiment alanalysis of hydro-pneumatic suspension based on fractional calculus [J].Journal of Vibration and Shock, 2014, 33(17):167-172.
[11] Lewandowski R, Łasecka-Plura M. Design sensitivity analysis of structures with viscoelastic dampers[J]. Computers and Structures, 2016, 164(1): 95-107.
[12] 李占龙, 孙大刚, 宋勇,等. 基于分数阶导数的黏弹性悬架减振模型及其数值方法[J]. 振动与冲击, 2016, 35(16): 123-129.
LI Zhan-long, SUN Da-gang, SONG Yong, et al.A fractional calculus-based vibration suppression model and its numerical solution for viscoelastic suspension[J]. Journal of Vibration and Shock, 2016, 35(16): 123-129.
[13] 吴杰, 上官文斌. 采用粘弹性分数导数模型的橡胶隔振器动态特性的建模及应用[J]. 工程力学, 2008, 25(1): 161-166.
WU Jie, SHANGGUAN Wen-bin. Modeling and application of dynamic for rubber isolator using viscoelastic fractional derivative model [J]. Engineering Mechanics, 2008, 25(1): 161-166.
[14] SHEN Yong-jun, YANG Shao-pu, XING Hai-jun, et al. Primary resonance of Duffing oscillator with two kinds of fractional-order derivatives[J], International Journal of Non-Linear Mechanics, 2012, 47(9):975-983.
[15] SHEN Yong-jun, YANG Shao-pu, XING Hai-jun, et al. Primary resonance of Duffing oscillator with fractional-order derivative[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(7): 3092-3100.
[16] SHEN Yong-jun, WEI Peng, YANG Shao-pu. Primary resonance of fractional-order van der Pol oscillator [J]. Nonlinear Dynamics, 2014, 77(4): 1629-1642.
[17] XU Yong, LI Yong-ge, LIU Di, et al. Responses of Duffing oscillator with fractional damping and random phase [J]. Nonlinear Dynamics, 2013, 74(3): 745-753.
[18] CHEN Lin-cong, ZHU Wei-qiu. The first passage failure of SDOF strongly nonlinear stochastic system with fractional derivative damping [J]. Journal of Vibration and Control, 2009, 15(8): 1247-1266.
[19] XIAO Min, ZHENG Wei-xing, CAO Jin-de. Approximate expressions of a fractional order Van der Pol oscillator by the residue harmonic balance method [J]. Mathematics and Computers in Simulation, 2013, 89: 1-12.
[20] WU Wen-juan, Chen Ning, Chen Nan. Chaotic synchronization of fractional piecewise linear system by fractional order SMC [J]. Ifac Proceedings Volumes, 2013, 46(1): 474-479.
[21] LU Jun-guo. Chaotic dynamics and synchronization of fractional-order Chua's circuits with a piecewise-linear nonlinearity [J]. International Journal of Modern Physics B, 2005,19(20):3249-3259.
[22] PETRAS I. Fractional-order Nonlinear Systems: Modeling, Analysis and Simulation[M], Higher Education Press, Beijing, 2011.
[23] CAPONETTO R, DONGOLA G, FORTUNA L, et al. Fractional order systems: modeling and control applications[M], World Scientific, Singapore, 2010.
[24] 高雪, 陈前, 刘先斌. 一类分段光滑隔振系统的非线性动力学设计方法[J]. 力学学报, 2015, 48(1) :192-200.
GAO Xue, CHEN Qian, Liu Xian-bin. Nonlinear dynamics design for piecewise vibration smooth isolation system[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 48(1) :192-200.

PDF(1410 KB)

Accesses

Citation

Detail

段落导航
相关文章

/