为研究泡沫铝夹芯结构的不同组合形式在中低速FSP侵彻下的抗弹性能及破坏机理,开展了系列弹道试验,分析了夹芯结构的破坏模式,得到了前后面板厚度大小、后面板分层对夹芯结构抗弹性能的影响。研究结果表明:在中低速FSP侵彻下,泡沫铝芯材发生了胞壁的绝热剪切破坏,其背弹面发生明显的撕裂破坏;前面板发生绝热剪切破坏,弹孔周围产生明显的碟形弯曲变形;后面板发生塑性变形和拉伸破坏,后面板较薄时,还相应出现花瓣开裂现象。在总面密度相同的情形下,夹芯结构的后面板越厚,整体单位面密度吸能越高,抗弹性能越好;将后面板分层后,整体抗弹性能较不分层有所提高。
Abstract
In order to investigate the anti-penetration performance and failure modes of aluminum foam sandwich structures under the impact of low-medium velocity fragment simulator projectile(FSP) , a series of ballistic experiment were carried out, the failure modes in different conditions were analysed and the influences of the thickness of front and rear sheets and the rear sheet delamination on the ballistic performance were discussed.The experiment results indicate that the foam core fails in the mode of through-thickness shearing and tearing by the low-medium velocity impact. The failure mode of the front face sheet is shear plugging, and obvious disc deformation around the bullet hole can be observed. The rear face sheet fails in shear fracture and plastic deformation, and the petal cracking occurs when the rear face sheet is thin.The ballistic performance will be better when the rear face sheet is thick or the rear face sheet is sliced.
关键词
泡沫铝 /
夹芯结构 /
组合形式 /
抗弹性能
{{custom_keyword}} /
Key words
aluminum foam /
sandwich structure;combination form /
ballistic performance
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] M. Peroni , G. Solomos , V. Pizznato. Impact behavior testing of aluminum foam [J]. International Journal of Impact Engineering. (2013): 74-83.
[2] Jae Ung Cho , Soon Jik Hong , Sang Kyo Lee , Chongdu Cho. Impact fracture behavior at material of aluminum foam[J]. Material Science and Engineering A.(2012):250-258.
[3] Zhu Feng , Lu Guo-xing , etc. Plastic Deformation, Failure and Energy Absorption of Sandwich Structures with Metallic Cellular Cores[J].International Journal of Protective Structures, 2010,1(4):537-541.
[4] 石少卿,刘仁辉,汪敏.钢板-泡沫铝-钢板新型复合结构降低爆炸冲击波性能研究[J].振动与冲击,2008,04(6):143-146.
SHI Shaoqing, LIU Renhui, WANG Min. Shock wave reduction behavior of a new compound strcture composed of a foam alluminum layer between two steel plates[J]. Journal of Vibration and Shock,2008,27(4): 143-146.
[5] Guo-yin Zu, Ri-huan Lu, etc. Three-point bending behavior of aluminum foam sandwich with steel panel[J].Transactions of Nonferrous Metal Society of China 23(2013):2491-2495.
[6] Ning-zhen WANG, Xiang CHEN, etc. Three-point bending performance of a new aluminum foam composite structure[J].Transactions of Nonferrous Metal Society of China 26(2016):359-368.
[7] S.L. Cheng , X.Y. Zhao , Y.J. Xin , S.Y. Du , H.J. Li. Quasi-static localized indentation tests on integrated sandwich panel of aluminum foam and epoxy resin[J]. Composite Structures 129 (2015) :157-164.
[8] 谌河水,赵恒义,张明华.泡沫铝芯体夹层板的冲击力学性能研究[J].宁波大学学报(理工版),2007(3):118-121.
CHEN He-shui , ZHAO Heng-yi , ZHANG Ming-hua. Research on the Impact Mechanic Property of Sandwich Beams with Aluminum Foam Core[J]. Journal of ningbo University(NSEE),2007(3):118-121.
[9] 敬霖,王志华,赵隆茂.撞击载荷下泡沫铝夹芯梁的塑形动力响应[J].爆炸与冲击,2010,30(6):561-568.
JING Lin, WANG Zhihua, ZHAO Longmao. Dynamic plastic response of foam sandwich beams subjected to impact loading[J]. Explosion and Shock Waves,2010,30(6): 561-568.
[10] 宋延泽,王志华,赵隆茂,赵勇刚. 撞击载荷下泡沫铝夹层板的动力响应[J].爆炸与冲击30(2010):01-07.
SONG Yan-ze, WANG Zhi-hua, ZHAO Long-mao, ZHAO Yong-gang. Dynamic response of foam sandwich plates subjected to impact loading[J].Explosion and Shock Waves,30(2010):01-07.
[11] Kapil Mohan, Tick Hon Yip, Sridhar Idapalapati,Zhong Chen.Impact response of aluminum foam core sandwich structures. Material Science and Engineering A.(2011):94-101.
[12] Vaidya. UK, Pillay. S, etc. Impact and post-impact vibration response of protective metal foam composite sandwich plates[J]. Materials Science and Engineering :A,2006,428(1-2):59-66.
[13] 李志斌,卢芳云.泡沫铝夹芯板压入和侵彻性能的实验研究[J].振动与冲击2015,34 (4):1-5.
LI Zhi-bin, LU Fang-yun. Test for indentation and perforation of sandwich panels with aluminum foam core[J].Journal of Vibration and Shock,2015,34 (4):1-5.
[14] 牛卫晶.冲击载荷下泡沫铝夹芯防护结构的侵彻动力学行为研究[D].太原:太原理工大学,2015.
NIU Wei-jing. Research on the Penetration Behavior of Sandwich Protective Structures with Aluminum Foam Cores under Impact Loading[D].Taiyuan: Taiyuan University of Technology,2015.
[15] 杨飞,王志华,赵隆茂. 泡沫铝夹芯板抗侵彻性能的数值研究[J].科学技术与工程11(2010):3377-3383.
YANG Fei, WANG Zhi-hua, ZHAO Long-mao. Numerical Simulation on Anti-penetration Performance of Aluminum Foam-based Sandwich Panels[J].Science Technology and Engineering11(2010):3377-3383.
[16] 阎石,黎伟.爆炸载荷下泡沫铝复合结构耗能性能分析[J].水利与建筑过程学报,2010,04(1):12-14.
YAN Shi, LI Wei. Numerical analysis on energy-consumption performance of foam aluminum composite structures under blast loading[J]. Journal of Water Resources and Architectural Engineering,2010,4(1):12-14.
[17] 韩守红,吕振华. 泡沫铝夹层结构抗爆炸性能仿真分析及优化[J]. 兵工学报2010,31(11):1468-1474.
HAN Shou-hong , LU Zhen-hua. Numerical Simulation of Blast-resistant Performance of Aluminum Foam Sandwich Structures and Optimization[J]. ARTA ARMAMENTARII2010,31(11):1468-1474.
[18] 钟云岭,郭香华, 张庆明. 冲击波在泡沫铝复合结构中的衰减特性理论分析[J].兵工学报2014,35(2):322-327.
ZHONG Yun-ling, GUO Xiang-hua, ZHANG Qing-ming. Study of the Attenuation of Shock Wave in Aluminum Foam Composite Structures[J]. ARTA ARMAMENTARII2014,35(2):322-327.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}