基于拓扑网格方法的多钝体流致振动分析

丁林 邹瑞 张力 邹群峰

振动与冲击 ›› 2019, Vol. 38 ›› Issue (22) : 236-243.

PDF(1830 KB)
PDF(1830 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (22) : 236-243.
论文

基于拓扑网格方法的多钝体流致振动分析

  • 丁林 邹瑞  张力 邹群峰
作者信息 +

Analysis on the flow-induced motion of multiple bluff bodies based on topological mesh

  • DING Lin, ZOU Rui, ZHANG Li, ZOU Qunfeng
Author information +
文章历史 +

摘要

多钝体流致振动是一个较为复杂的流固耦合过程,普遍存在于自然界和工程领域。为了减小高幅振动时网格变形引起的计算误差,本文基于非定常Navier-Stokes方程对二维双圆柱和三圆柱、三维双圆柱流致振动进行数值求解,采用耦合界面结合拓扑网格变形技术,实现流体与多个运动钝体之间的耦合计算。将数值结果与实验进行比较分析,验证了该数值方法是处理高振幅多钝体流致振动的有效方法。研究结果表明上游圆柱的存在对下游圆柱流致振动和旋涡形成产生明显影响。串列双圆柱流致振动振幅和频率响应与实验测试趋势一致,清晰观察到了涡致振动初始分支和上部分支;并且当Re>8×104时,圆柱流致振动由涡致振动向驰振过渡。圆柱尾涡形态随流致振动分支切换发生变化,当驰振发生时,下游圆柱的尾涡形态受上游圆柱影响难以捕捉。随着双圆柱间距增大,低Re时下游圆柱受到上游圆柱的抑制作用减弱。三维多柱体流致振动计算结果更接近实验值,如何提高三维数值计算速度将是下一步研究工作的重点。

Abstract

The flow-induced motion (FIM) of multiple bluff bodies is a complex phenomenon of fluid-structure interaction. In order to minimize the errors caused by mesh deformation, the dynamic mesh technique of topological change combined with coupling interface was developed to investigate the FIM of multiple bluff bodies. Based on the unsteady Navier-Stokes equations, the FIMs of 2-dimensional two/three circular cylinders and 3-dimensional two cylinders were numerically simulated and then verified by experimental data. The numerical approach is proved to be an effective method to handle large amplitude FIM responses. The results show that the upstream cylinder has a significant influence on the motion and vortex shedding of the downstream cylinder. For two cylinders in tandem, the amplitude and frequency results,which are in excellent agreement with experimental data,exibit the initial and upper branches of the vortex-induced vibration (VIV). When Re>8×104, the transition from VIV to galloping is initiated. The near-wake vortex pattern changes with the switching of FIM branches. It is difficult to identify the vortex pattern of the downstream cylinder when galloping occurs. As the distance between the two cylinders increases, the suppression of the downstream cylinder motion by the upstream cylinder is weakened at low Re. The 3-dimensional simulation of FIM for multiple cylinders makes, the calculation results closer to the experimental values than the 2-dimensional calculation. How to improve the calculation speed of 3-dimensional simulations will be the focus of the next work.

关键词

钝体 / 流致振动 / 拓扑网格 / 耦合界面 / 流固耦合

Key words

bluff body / flow-induced motion / topological mesh / coupling interface / fluid-structure interaction

引用本文

导出引用
丁林 邹瑞 张力 邹群峰. 基于拓扑网格方法的多钝体流致振动分析[J]. 振动与冲击, 2019, 38(22): 236-243
DING Lin, ZOU Rui, ZHANG Li, ZOU Qunfeng. Analysis on the flow-induced motion of multiple bluff bodies based on topological mesh[J]. Journal of Vibration and Shock, 2019, 38(22): 236-243

参考文献

[1] Williamson C H K, Govardhan R. Vortex-induced vibrations[J]. Annual Review of Fluid Mechanics, 2004, 36(1): 413-455.
[2] Bearman P W. Circular cylinder wakes and vortex-induced vibrations[J]. Journal of Fluids & Structures, 2011, 27(5):648-658.
[3] Wu X, Ge F, Hong Y. A review of recent studies on vortex-induced vibrations of long slender cylinders[J]. Journal of Fluids & Structures, 2012, 28: 292-308.
[4] 孙丽萍, 张旭, 倪问池. 双自由度涡激振动数值模拟方法研究[J]. 振动与冲击, 2017, 36(23):22-26.
SUN Liping, ZHANG Xu, NI Wenchi. Numerical simulation method for 2- DOF vortex- induced vibration [J]. Journal of vibration and shock, 2017, 36(23):22-26.
[5] 陈正寿, 赵宗文, 张国辉,等. 质量比对刚性圆柱体涡激振动影响的研究[J]. 振动与冲击, 2017, 36(11):248-254.
CHEN Zhengshou, ZHAO Zongwen, ZHANG Guohui, et al. Effects of mass ratio on vortex-induced vibration of a rigid cylinder [J]. Journal of vibration and shock, 2017, 36(11):248-254.
[6] Zdravkovich M M. Flow induced oscillations of two interfering circular cylinders[J]. Journal of Sound and Vibration, 1985, 101(4): 511-521.
[7] Zdravkovich M M. The effects of interference between circular cylinders in cross flow[J]. Journal of Fluids and Structures, 1987, 1(2): 239-261.
[8] Assi G, Bearman P, Meneghini J. On the wake-induced vibration of tandem circular cylinders: the vortex interaction excitation mechanism[J]. Journal of Fluid Mechanics, 2010, 661(1): 365-401.
[9] Assi G, Meneghini J, Aranha J, et al. Experimental investigation of flow-induced vibration interference between two circular cylinders[J]. Journal of Fluids & Structures, 2006, 22(6): 819-827.
[10] Lin J Z, Jiang R J, Chen Z L, et al. Poiseuille flow-induced vibrations of two cylinders in tandem[J]. Journal of Fluids and Structures, 2013, 40: 70-85.
[11] Kim S, Alam M M, Sakamoto H, et al. Flow-induced vibrations of two circular cylinders in tandem arrangement. Part 1: Characteristics of vibration[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2009, 97(5–6): 304-311.
[12] 关德宝, 黄维平, 宋虹,等. 串列圆柱体尾流、尾涡耦合振动试验研究[J]. 振动与冲击, 2014, 33(22):26-29.
GUAN De-bao, HUANG Wei-ping, SONG Hong, et al. Experimental investigation of wake flow and wave-vortex coupled vibration of two tandem and cylinders [J]. Journal of vibration and shock, 2014, 33(22):26-29.
[13] 陈文曲, 任安禄, 李广望. 串列双圆柱绕流下游圆柱两自由度涡致振动研究. 力学学报, 2004, 36(06): 732-738.
CHEN Wenqu, REN Anlu, LI Guangwang. The numerical study of two-degree-of-freedom vortex-induced vibration of the downstream cylinder in tandem arrangement [J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(06): 732-738.
[14] Kim E S, Bernitsas M M, Kumar R A. Multicylinder flow-induced motions: enhancement by passive turbulence control at 28,000 < Re < 120,000[J]. Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme, 2013, 135(2): 021802(1-11).
[15] Wu W, Bernitsas M M, Maki K. RANS simulation vs. experiments of flow induced motion of circular cylinder with passive turbulence control at 35,000 <Re <130,000. ASME 2011 30th International Conference on Ocean[C], Offshore and Arctic Engineering. 2011. June 19–24, Rotterdam, The Netherlands.
[16] Beaudoin M, Jasak H. Development of a generalized grid interface for turbomachinery simulations with OpenFOAM[C]. Open Source CFD International Conference, December 4th/5th, Berlin, Germany, 2008.
[17] Jasak H. Dynamic Mesh Handling in OpenFOAM[C]. 47th AIAA Aerospace Sciences Meeting and Exhibit. Hrvatska znanstvena bibliografija i MZOS-Svibor, 2009.
[18] Lucchini T, D'Errico G, Jasak H, Tukovic Z. Automatic mesh motion with topological changes for engine simulation. SAE Technical Paper, 2007-01-0170.
[19] Lee J H, Xiros N, Bernitsas M M. Virtual damper-spring system for VIV experiments and hydrokinetic energy conversion[J]. Ocean Engineering, 2011, 38(5-6): 732-747.
[20] Khalak A, Williamson C H K. Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping[J]. Journal of Fluids and Structures, 1999, 13(7-8): 813-851.

PDF(1830 KB)

587

Accesses

0

Citation

Detail

段落导航
相关文章

/