含隔板球形贮箱液体晃动激励频率影响分析

马亮 1,刘昊 1,魏承 1,汤亮 2,赵阳 1

振动与冲击 ›› 2019, Vol. 38 ›› Issue (22) : 257-262.

PDF(1827 KB)
PDF(1827 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (22) : 257-262.
论文

含隔板球形贮箱液体晃动激励频率影响分析

  • 马亮 1 , 刘昊 1 ,魏承 1 ,汤亮 2 ,赵阳 1
作者信息 +

Effect of excitation frequency on the liquid sloshing in spherical tanks with baffle

  • MA Liang 1  LIU Hao 1  WEI Cheng 1  TANG Liang 2  ZHAO Yang 1
Author information +
文章历史 +

摘要

针对航天器球形贮箱液体大幅晃动问题,采用光滑粒子流体动力学方法(SPH方法)对液体进行建模:基于SPH方法基本方程推导出N-S方程的数值解,并给出人工粘度项、压力项表达式,选择动态边界法处理边界计算问题。建立光滑内壁球形贮箱及带防晃隔板球形贮箱两种模型,设计力模式、运动模式两种激励形式并选择三种激励频率进行仿真分析,分别记录舱壁受力及测点压强。仿真结果表明:激励频率取为1.5Hz时,舱壁受力最大;隔板能够减弱液体晃动对舱壁产生的作用;液体晃动现象的产生使得舱壁在y, z两方向的受力均增大;位于液面以下的舱壁所受压力具有“双波峰”特性,而隔板的存在对压力峰值具有“平均化”效果,避免局部压力过大;位于液面以上的舱壁所受压力表现为“脉冲波”形式,随激励频率的增加隔板对舱壁压力的削弱效果越明显。

Abstract

The smoothed particle hydrodynamics (SPH) was utilized to solve the liquid sloshing in spherical tanks of spacecraft. The numerical solutions of Navier-Stokes equations were deduced, along with the artificial viscosity and pressure term appropriately expressed and the boundaries properly dealt with by using the dynamic boundary treatment. Two kinds of spherical tanks were built, one with baffle and the other without. Two types of harmonic excitations were designed, the force type and the motion type,with three different frequencies. The force applied on the bulkhead and the pressure at measuring points were measured. The simulation results show that: when the excitation frequency is 1.5 Hz, the force applied on bulkhead reaches its maximum. The pressure curve at the measuring point beneath liquid level has “double-peak”, the baffle can balance the two peaks and decrease the maximum pressure. The pressure curve at the measuring point over liquid level is of the form of  “impulse wave”, the depression effect of baffle enhances with the increase of frequency.

关键词

SPH方法 / 液体晃动 / 球形贮箱 / 隔板 / 大幅晃动

Key words

smoothed particle hydrodynamics / liquid sloshing / spherical tank / baffle / large amplitude sloshing

引用本文

导出引用
马亮 1,刘昊 1,魏承 1,汤亮 2,赵阳 1. 含隔板球形贮箱液体晃动激励频率影响分析[J]. 振动与冲击, 2019, 38(22): 257-262
MA Liang 1 LIU Hao 1 WEI Cheng 1 TANG Liang 2 ZHAO Yang 1. Effect of excitation frequency on the liquid sloshing in spherical tanks with baffle[J]. Journal of Vibration and Shock, 2019, 38(22): 257-262

参考文献

[1] LUCY L B. A numerical approach to the testing of the fission hypothesis[J]. The astronomical journal, 1977, 82: 1013-1024.
[2] GINGOLD R A, MONAGHAN J J. Smoothed particle hydrodynamics: theory and application to non-spherical stars[J]. Monthly notices of the royal astronomical society, 1977, 181(3): 375-389.
[3] KANG J Y. Slosh Dynamics of Internal Mass in a Spinning Vehicle[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit. 2004: 11.
[4] SHAGEER H, TAO G. Modeling and adaptive control of spacecraft with fuel slosh: overview and case studies[C]//AIAA Guidance, Navigation and Control Conference and Exhibit. 2007: 1-19.
[5] BAETEM A, STERN D. Prediction of Highly Dynamic Airborne Tank Fuel Sloshing and Impact Effects[C]//46th AIAA Aerospace Sciences Meeting and Exhibit. 2008: 1-15.
[6] DALRYMPLE R A, ROGERS B D. Numerical modeling of water waves with the SPH method[J]. Coastal engineering, 2006, 53(2): 141-147.
[7] ZHENG K, SUN Z, SUN J, et al. Numerical simulations of water wave dynamics based on SPH methods[J]. Journal of Hydrodynamics, Ser. B, 2009, 21(6): 843-850.
[8] STAROSZCZYK R. Simulation of solitary wave mechanics by a corrected smoothed particle hydrodymamics method[J]. Archives of Hydro-Engineering and Environmental Mechanics, 2011, 58(1-4): 23-45.
[9] FLEISSNER F, EBERHARD P. A Co‐Simulation Approach for the 3D Dynamic Simulation of Vehicles Considering Sloshing in Cargo and Fuel Tanks[J]. PAMM, 2009, 9(1): 133-134.
[10] FLEISSNER F, LEHNART A, Eberhard P. Dynamic simulation of sloshing fluid and granular cargo in transport vehicles[J]. Vehicle system dynamics, 2010, 48(1): 3-15.
[11] LEHNART A, FLEISSNER F, Eberhard P. Using SPH in a co-simulation approach to simulate sloshing in tank vehicles[J]. Proceedings SPHERIC4, Nantes, France, May, 2009: 27-29.
[12] MONAGHAN J J. Simulating free surface flows with SPH[J]. Journal of computational physics, 1994, 110(2): 399-406.
[13] MORRIS J P, FOX P J, ZHU Y. Modeling low Reynolds number incompressible flows using SPH[J]. Journal of computational physics, 1997, 136(1): 214-226.
[14] XU R, STANSBY P, LAURENCE D. Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach[J]. Journal of Computational Physics, 2009, 228(18): 6703-6725.
[15] CHEN Z, ZONG Z, LIU M B, et al. A comparative study of truly incompressible and weakly compressible SPH methods for free surface incompressible flows[J]. International Journal for Numerical Methods in Fluids, 2013, 73(9): 813-829.
[16] KHORASANIZADE S, SOUSA J M M. A detailed study of lid‐driven cavity flow at moderate Reynolds numbers using Incompressible SPH[J]. International Journal for Numerical Methods in Fluids, 2014, 76(10): 653-668.
[17] SHADLOO M S, ZAINALI A, SADEK S H, et al. Improved incompressible smoothed particle hydrodynamics method for simulating flow around bluff bodies[J]. Computer methods in applied mechanics and engineering, 2011, 200(9): 1008-1020.
[18] MACIÁ F, ANTUONO M, GONZÁLEZ L M, et al. Theoretical analysis of the no-slip boundary condition enforcement in SPH methods[J]. Progress of theoretical physics, 2011, 125(6): 1091-1121.
[19] 黄华, 杨雷. 航天器贮箱大幅液体晃动三维质心面等效模型研究[J]. 宇航学报, 2010, 31(1): 55-59.
HUANG H, YANG L. Research on 3D constraint surface model for large amplitude liquid sloshing on spacecraft tank [J]. Journal of Astronautics, 2010, 31(1): 55-59(in Chinese).
[20] 赵阳, 潘冬, 马文来. 微重力下球形贮箱内液体晃动有限元模拟[J]. 上海航天, 2012, 29(3): 28-33.
ZHAO Y, PAN D, MA W L. Finite element analysis of propellants slosh in spherical tank under micro gravity [J]. Aerospace Shanghai, 2012, 29(3): 28-33(in Chinese).
[21] 王天舒, 苗楠, 李俊峰. 航天器交会对接中液体燃料晃动等效模型研究[J]. 空间控制技术与应用, 2015, 41(3): 1-7.
WANG T S, MIAO N, LI J F. Liquid sloshing equivalent mechanical model during rendezvous and docking [J]. Aerospace Control and Application, 2015, 41(3): 1-7(in Chinese).
[22] 苗楠, 李俊峰, 王天舒. 横向激励下液体大幅晃动建模分析[J]. 宇航学报, 2016, 37(3): 268-274.
MIAO N, LI J F, WANG T S. Modeling analysis of large-amplitude liquid sloshing under lateral excitation [J]. Journal of Astronautics, 2016, 37(3): 268-274(in Chinese).
[23] 岳宝增, 唐勇. 球形贮箱中三维液体大幅晃动数值模拟[J]. 宇航学报, 2016, 37(12): 1405-1410.
YUE B Z, TANG Y. Numerical simulation of three dimensional large-amplitude liquid sloshing in spherical containers [J]. Journal of Astronautics, 2016, 37(12): 1405-1410(in Chinese).
[24] 应磊, 周叮, 房忠洁. 带隔板矩形贮箱俯仰晃动研究[J]. 振动与冲击, 2018, 37(8):54-59.
YING L, ZHOU D, FANG Z J. Analysis of pitching motion on rectangular adequate with a baffle [J]. Journal of Vibration and Shock, 2018, 37(8):54-59(in Chinese).
[25] Monaghan J J, Lattanzio J C. A refined particle method for astrophysical problems[J]. Astronomy & Astrophysics, 1985, 149:135-143.
[26] Monaghan J J. Smoothed particle hydrodynamics[J]. Annual Review of Astronomy and Astrophysics, 1992, 30:543- 574.
[27] Monaghan J J, Kos A. Solitary Waves on a Cretan Beach[J]. Journal of Waterway Port Coastal & Ocean Engineering, 1999, 125(3):145-155.
[28] Crespo A J C, Gomez-Gesteira M, Dalrymple R A. Boundary conditions generated by dynamic particles in SPH methods[J]. Cmc -Tech Science Press-, 2007, 3(3):173-184.

PDF(1827 KB)

382

Accesses

0

Citation

Detail

段落导航
相关文章

/