基于小波变换的非平稳排气噪声信号阶次分析方法

刘海涛

振动与冲击 ›› 2019, Vol. 38 ›› Issue (22) : 29-35.

PDF(2357 KB)
PDF(2357 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (22) : 29-35.
论文

基于小波变换的非平稳排气噪声信号阶次分析方法

  • 刘海涛
作者信息 +

Order Analysis of Non-stationary Exhaust Noise Signals based on Wavelet Transform

  •  LIU Haitao
Author information +
文章历史 +

摘要

汽车排气阶次噪声提取对于汽车声品质以及汽车分类识别具有重要的意义。为准确提取阶次噪声的时域信号,本文提出一种基于小波变换的非线性多分辨率的细化分析计算方法。通过理想带通传递函数构建基小波函数,基小波函数通过平移和伸缩实现信号的局部细化分析。探索小波函数的截取方式对频谱泄漏的影响,选取合适的窗函数截取小波函数,并通过与时域噪声信号的相关变换准确提取各阶次成分的时域波动信号。最后,通过实车测试获取加速工况下的转速脉冲信号和排气辐射噪声信号,对以上方法进行验证。结果表明,本文提出的分析方法可准确提取出非平稳排气噪声中的阶次成分,为排气噪声阶次分析提供标准可靠的信号处理手段。

Abstract

Vehicle exhaust order noise extraction is of great significance for vehicle sound quality research and vehicle classification and recognition. In order to extract the time domain signal of exhaust order noise, a nonlinear refining analysis method with multi-resolution based on wavelet transform was proposed. The basis wavelet function was constructed by ideal band-pass transfer function. The local refinement analysis of signals was realized by translation and scaling of the basis wavelet function. The influence of the interception method of wavelet function on the spectrum leakage was explored. A proper window function was selected to intercept wavelet function, which was used to accurately extract the time domain signal of each order components through the correlation transform with the time domain noise signal. At last, the speed pulse signal and the exhaust noise signal under the accelerating condition were obtained by real vehicle test, and the analysis method of this work was verified. The results show that the analysis method proposed in this paper can accurately extract the order components in the non-stationary exhaust noise, thus providing a reliable and standard signal processing method for the order analysis of exhaust noise.

关键词

非平稳时变信号 / 阶次 / 基小波函数 / 窗函数 / 相关变换

Key words

Non-stationary time-varying signals / order / basis wavelet function / window function / correlation transform

引用本文

导出引用
刘海涛 . 基于小波变换的非平稳排气噪声信号阶次分析方法[J]. 振动与冲击, 2019, 38(22): 29-35
LIU Haitao. Order Analysis of Non-stationary Exhaust Noise Signals based on Wavelet Transform[J]. Journal of Vibration and Shock, 2019, 38(22): 29-35

参考文献

[1] 刘海涛, 郑四发, 但佳壁, 等. 带阀消声器阀体开度变化的声学特性分析及应用[J]. 机械工程学报, 2015, 51(6):135-141.
LIU Haitao, ZHENG Sifa, DAN Jiabi, et al. Acsoutic Performance Analysis of the Varying Valve Opening Angle for the Muffler with Valve and Its Application[J]. Journal of Mechanical Engineering, 2015, 51(6): 135-141.
[2] 栾文博, 吴光强, 徐炜卿. 基于阶次跟踪的变速箱啸叫噪声分析[J]. 振动与冲击, 2013, 32(11): 95-99.
LUAN Wenbo, WU Guangqiang, XU Weiqing. Gearbox whine noise analysis based on order tracking[J]. Journal of Vibration and Shock, 2013, 32(11): 95-99.
[3] 戴功伟. 基于自适应转频跟踪滤波的旋转机械阶次分析研究[D]. [硕士学位论文]. 重庆大学, 2013.
      DAI Gongwei. Research on Order Analysis of Rotating Machinery Based on Adaptive Frequency Tracking Filtering[D]. [Master dissertation], Chongqing University, 2013.
[4] HE Guolin, DING Kang, LI Weihua, et al. A novel order tracking method for wind turbine planetary gearbox vibration analysis based on discrete spectrum correction technique[J]. Renewable Energy, 2016, 87(1): 364-375.
[5] BORGHESANI P, PENNACCHI P, CHATTERTON S, et al. The velocity synchronous discrete Fourier transform for order tracking in the field of rotating machinery[J]. Mechanical Systems and Signal Processing, 2014, 44(1-2): 118-133.
[6] POTTER R. A new order tracking method for rotating machinery[J]. Sound and Vibration, 1990, 24(9): 30-34.
[7] WANG Yi, XU Guanghua, LUO Ailing, et al. An online tacholess order tracking technique based on generalized demodulation for rolling bearing fault detection[J]. Journal of Sound and Vibration, 2016, 367(1): 233-249.
[8]    ZHAO Ming, LIN Jing, WANG Xiufeng, et al. A tacho-less order tracking technique for large speed variations[J]. Mechanical Systems and Signal Processing,2013,40(1): 76- 90.
[9] VOLD H, LEURIDAN J. High resolution order tracking at extreme slew rates using Kalman tracking filter[J]. Shock and Vibration, 1995,2(6): 507-515.
[10] VOLD H, HERLUFSEN H. Multi axle Order Tracking with the Vold-Kalman Tracking Filter[J]. Sound And Vibration, 1997, 31(5): 30-34.
[11]   PAN M C, CHU W C, LE D D. Adaptive angular-velocity Vold–Kalman filter order tracking – Theoretical basis, numerical implementation and parameter investigation[J]. Mechanical Systems and Signal Processing, 2016, 81(1): 148-161.
[12] ALBRIGHT M F, QIAN S. A comparison of the newly proposed Gabor order tracking technique vs. other order tracking methods[C]. Noise and Vibration Conference & Exposition. Traverse City, Michigan, 2001: 151-156.
[13] PAN M C, CHIU C C. Investigation on improved Gabor order tracking technique and its applications[J]. Journal of Sound and Vibration, 2006, 295(3-5): 810-826.
[14] 连小珉. 动态信号内积变换原理[M]. 北京: 清华大学出版社, 2016: 400-408.
LIAN Xiaomin. Principle of inner product transformation for dynamic signals[M]. Beijing: Tsinghua University Press, 2016: 400-408.
[15] 韩民, 成旭, 李登旺.基于小波变换的多分辨率锥束CT图像快速三维重建算法[J]. 电子与信息学报, 2017, 89(10): 2437-2411.
HAN Min, CHENG Xu, LI Dengwang. Fast 3D Reconstruction Algorithm of Multi-resolution Cone Beam CT Image Based on Wavelet Transform[J]. Journal of Electronics & Information Technology, 2017, 89(10): 2437-2411.
[16] 杨帆, 张方. 动载荷识别的小波级数分解法阶次确定[J]. 振动、测试与诊断, 2015, 35(1): 56-62.
YANG Fan, ZHANG Fang. Order Selection for Wavelet Series Decomposition in Dynamic Load Identification[J]. Journal of Vibratiion, Measurement & Diagnosis. 2015, 35(1): 56-62. 
[17]  TENG Wei, DING Xian, ZHANG Xiaolong, et al. Multi-fault detection and failure analysis of wind turbine gearbox using complex wavelet transform[J]. Renewable Energy, 2016, 93(1): 591-598.
[18]   QI Xiaoxuan, YUAN Zhonghu, HAN Xiaowei. Diagnosis of misalignment faults by tacholess order tracking analysis and RBF networks[J]. Neurocomputing, 2015, 169(1): 439-448.

PDF(2357 KB)

Accesses

Citation

Detail

段落导航
相关文章

/