单自由度含对称约束碰振系统周期运动的转迁规律分析

李得洋1,丁旺才1,丁杰1,李飞2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (22) : 52-59.

PDF(2240 KB)
PDF(2240 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (22) : 52-59.
论文

单自由度含对称约束碰振系统周期运动的转迁规律分析

  • 李得洋1,丁旺才1,丁杰1,李飞2
作者信息 +

Transition of periodic motions of a 1DOF vibro-impact system with symmetrical constraints

  • LI Deyang1,DING Wangcai1,DING Jie1,LI Fei2
Author information +
文章历史 +

摘要

利用数值仿真方法,分析了单自由度含对称弹性约束碰撞振动系统在 参数平面内周期运动的分布及转迁规律。首先,根据周期运动的边界条件和衔接条件理论推导得到了系统 周期运动存在的条件。其次,数值仿真得到了系统在 参数平面内的周期运动分布图,并根据各周期运动转迁的特点将参数平面划分为两个参数域,进而结合胞映射方法对各参数域内周期运动的转迁规律、周期吸引子及其吸引域的分布进行了分析;最后总结了各参数域内周期运动之间的相互转迁规律。

Abstract

A 1DOF vibro-impact system with symmetrical soft constraints was considered. The distribution and transition of its periodic motion in the(ω,b)-parameter plane were analyzed with the direct numerical continuation techniques. According to the boundary condition of the periodic motion and the motion continuity condition, the condition of the n-1-1S  periodic impact motion was deduced. The distribution of periodic motions of the system in the (ω,b)-parameter plane was obtained by using numerical simulation, and the whole parametric plane was divided into two regions according to the type of transition of periodic motions. The transition of periodic motion, the attractor and its attracting domain were analysed by the combined use of the cell mapping method. Finally, the transition law in different parameter domains was summarized explicitly. 

关键词

非光滑 / 分岔 / 吸引域 / 转迁规律

Key words

Nonsmooth system / Bifurcation / Domain of attraction;Transition law;

引用本文

导出引用
李得洋1,丁旺才1,丁杰1,李飞2. 单自由度含对称约束碰振系统周期运动的转迁规律分析[J]. 振动与冲击, 2019, 38(22): 52-59
LI Deyang1,DING Wangcai1,DING Jie1,LI Fei2. Transition of periodic motions of a 1DOF vibro-impact system with symmetrical constraints[J]. Journal of Vibration and Shock, 2019, 38(22): 52-59

参考文献

[1] 金栋平,胡海岩. 碰撞振动及其典型现象[J]. 力学进展,1999, 29(2): 155-164.
Jin Dongping, Hu Haiyan. VIBRO2IMPACTS AND THEIR TYPICAL BEHAVIORS OF MECHANICAL SYSTEMS[J]. ADVANCES IN MECHAN ICS, 1999, 29(2): 155-164.
[2] 丁旺才,谢建华. 碰撞振动系统分岔与混沌的研究进展[J]. 力学进展, 2005, 35(4): 513-524.
DING Wangcai, Xie Jianhua. ANVANCES OF RESEARCH ON BIFURCATIONS AND CHAOS IN VIBRO-IMPACT SYSTEM[J]. ADVANCES IN MECHAN ICS, 2005, 35(4): 513-524.
[3] Shaw S W, Holmes P. A periodically forced piece-wise linear oscillator[J]. Journal of Sound and Vibration, 1983, 90(1): 129-155.
[4] Bernardo M D, Champneys A R, Budd C J. Piecewise-smooth dynamical systems: theory and applications[M].London: Springer,2008.
[5] Soumya Kundu, Soumitro Banerjee, James Ing, et al. Singularities in soft-impacting systems[J]. Physica D, 2012, 241 (22), 553-565.
[6] 徐慧东, 谢建华. 一类单自由度分段线性系统的分岔和混沌控制[J]. 振动与冲击, 2008,27(6):20-24.
Xu huidong, Xie jianhua. Bifurcation and chaos control of a single-degree-of-freedom system with piecewise-linearity[J]. Journal of vibration and shock,2008,27(6):20-24.
[7] 张惠,丁旺才, 李飞. 两自由度含间隙和预紧弹簧碰撞振动系统动力学分析[J]. 工程力学,2011,28(3): 209-217.
ZHANG Hui, DING Wang-cai, LI Fei. DYNAMICS OF A TWO-DEGREE-OF-FREEDOM IMPACT SYSRTEM WITH CLEARANCE AND PRE-COMPRESSED SPRING[J]. ENGINEERING MECHANICS,2011,28(3): 209-217.
[8] 吴志强,雷娜. 分段线性系统的振动性能分析[J]. 振动与冲击, 2015,34(18):94-99.
Wu zhi-qing, Lei Na. Vibration performance analysis of piecewise linear system[J]. Journal of vibration and shock, 2015,34(18):94-99.
[9] 汪诤,潘丽华,刘文辉,包发毅. 对称间隙单自由度振动系统的等效电路仿真和实验[J]. 振动与冲击, 2017,36(1):142-145.
Wang Zheng, Pan Lihua, Liu Wenhui, Bao Fayi. Equvalent circuits simulation and tests for a single DOF vibration system with symmetrical gap[J]. Journal of vibration and shock, 2017,36(1):142-145.
[10] Hsu C S. A theory of cell-to-cell mapping dynamical systems[J]. Journal of Applied Mechanics,1980, 47 (4):931-939.
[11] Levitas J, Weller T, Singer J. Poincare-like simple cell mapping for nonlinear dynamical systems[J]. Journal of Sound and Vibration, 1994, 176 (5):641-662.
[12] Levitas J, Weller T. Poincare linear interpolated cell mapping: method for global analysis of oscillating systems[J]. Journal of Applied Mechanics,1995, 62 (2):489-495.
[13] 李 健,张思进. 非光滑动力系统胞映射计算方法[J]. 固体力学学报, 2007, 28(1):93-96.
Li Jian, Zhang Sijin. Cell-mapping computation method for non-smooth dynamical systems[J]. ACTA MECHANICA SOLIDA SINICA,2007, 28(1):93-96.
[14] Antonio S E Chong, Yuan Yue, Ekaterina Pavlovskaia, et al. Global dynamics of a harmonically excited oscillator with a play: Numerical studies[J]. International Journal of Non-Linear Mechanics,2017, 94 (7):98-108.
[15] 田亚平, 褚衍东, 饶晓波. 双参变量下单级齿轮传动系统分岔/冲击特性分析[J]. 振动与冲击, 2018,37(13):218-223.
Tian Yaping, Chu Yandong, Rao Xiaobo. Bifurcation & impact characteristics of a single-stage gear train in a two-parameter plane[J]. Journal of vibration and shock, 2018,37(13):218-223.

PDF(2240 KB)

426

Accesses

0

Citation

Detail

段落导航
相关文章

/