落锤冲击荷载作用下蒸压加气混凝土的缓冲性能试验研究

周耀1,俞斌1,郭全全1,马英2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (22) : 79-84.

PDF(1238 KB)
PDF(1238 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (22) : 79-84.
论文

落锤冲击荷载作用下蒸压加气混凝土的缓冲性能试验研究

  • 周耀1,俞斌1,郭全全1,马英2
作者信息 +

Experimental investigation on the buffer performance of autoclaved aerated concrete under the impact load of drop weight

  • ZHOU Yao1, YU Bin1, Guo Quanquan1, Ma Ying2
Author information +
文章历史 +

摘要

蒸压加气混凝土落锤冲击试验考虑了试件的厚度、落距对冲击力最大值的影响。试验结果表明,一定冲击能量下试件的冲击力最大值随自身厚度增加先变小后变大,存在一个使冲击力最大值为最小的最佳厚度。提出了冲击力最大值的计算公式,公式与试验结果吻合良好,并得出了最佳厚度的计算方法。冲击过程中,冲击能量转化为缓冲层材料的表面能,转化的量随厚度先增大后减小,缓冲效果先变好后变差。

Abstract

The influences of the thickness of specimens and the drop height on the maximun impact force were investigated in impact tests of autoclaved aerated concrete.The test results show that the maximun impact force under a certain impact energy first reduces, then increases as the thickness increases. There is an optimum thickness to minimize the impact force. The formula for calculating the maximun impact force was proposed, by which the calculating results are in good agreement with the test results and the optimum thickness can be derived. During the impact process, the impact energy is converted into the surface energy of the buffer layer material,this surface energy increases first and then decreases with the increase of thickness, and the buffer effect first becomes better and then becomes worse.

关键词

蒸压加气混凝土 / 落锤冲击试验 / 缓冲层厚度 / 缓冲性能 / 表面能

Key words

autoclaved aerated concrete (AAC) / drop weight impact test / thickness of buffer layer / buffer performance / surface energy.

引用本文

导出引用
周耀1,俞斌1,郭全全1,马英2. 落锤冲击荷载作用下蒸压加气混凝土的缓冲性能试验研究[J]. 振动与冲击, 2019, 38(22): 79-84
ZHOU Yao1, YU Bin1, Guo Quanquan1, Ma Ying2. Experimental investigation on the buffer performance of autoclaved aerated concrete under the impact load of drop weight[J]. Journal of Vibration and Shock, 2019, 38(22): 79-84

参考文献

[1] WANG Rui, HAN Lin-Hai, ZHAO Xiao-Ling, et al. Experimental behavior of concrete filled double steel tubular (CFDST) members under low velocity drop weight impact[J]. Thin-Walled Structures, 2015 (97): 279–295.
[2] 任晓虎,霍静思,陈柏生. 火灾下钢管混凝土梁落锤冲击试验研究[J]. 振动与冲击,2012,31(20):110-115.
REN Xiao-hu, HUO Jing-si, CHEN Bai-sheng. Anti-impact behavior of concrete-filled steel tubular beams in fire[J]. Journal of Vibration and Shock, 2012, 31(20): 110-115.
[3] 霍静思,任晓虎,肖岩. 标准火灾作用下钢管混凝土短柱落锤动态冲击试验研究[J]. 土木工程学报,2012,45(4):9-20.
    HUO Jingsi, REN Xiaohu, XIAO Yan. Impact behavior of concrete-filled steel tubular stub columns under ISO-834 standard fire. China Civil Engineering Journal, 2012, 45(4): 9-20.
[4] 王璞,黄真,周岱等. 碳纤维混杂纤维混凝土抗冲击性能研究[J]. 振动与冲击,2012,31(12):14-18
     WANG Pu, HUANG Zhen, ZHOU Dai et al. Impact mechanical properties of concrete reinforced with hybrid carbon fibers[J]. Journal of Vibration and Shock, 2012, 31(12):14-18.
[5] ZHANG Wuman, CHEN Shuhang, ZHANG Ning, et al. Low-velocity flexural impact response of steel fiber reinforced concrete subjected to freeze-thaw cycles in NaCl solution[J]. Construction and Building Materials, 2015, 101: 522-526.  
[6] ZHANG Wuman, ZHANG Ning, ZHOU Yao. Effect of flexural impact on freeze-thaw and deicing salt resistance of steel fiber reinforced concrete[J]. Materials and Structures, 2016, 49(12): 5161-5168.
[7] ONOUE Kozo, Hiroki Tamai, Hendro Suseno. Shock-absorbing capability of lightweight concrete utilizing volcanic pumice aggregate[J]. Construction and Building Materials, 2015, (83): 261-274.
[8] 王洪欣,查晓雄,余敏等. 低速冲击下金属面夹芯板性能分析[J]. 振动与冲击,2014,33(10):81-86.
     WANG Hong-xin, ZHA Xiao-xiong, YU Min et al. Impact resistance performance of metallic sandwich panels under low velocity impact[J]. Journal of Vibration and Shock, 2012, 31(12): 14-18.
[9] Dey V., Bonakdar A., Mobasher B. Low-velocity flexural impact response of fiber-reinforced aerated concrete[J]. Cement & Concrete Composites, 2014, 49: 100-110.

PDF(1238 KB)

452

Accesses

0

Citation

Detail

段落导航
相关文章

/