为了探索应用高阶阻抗传递函数进行车辆ISD悬架结构设计时的性能提升效果,本文以双三次型阻抗传递函数作为研究对象,通过筛选应用机电惯容器的车辆ISD悬架的结构特征,利用无源网络综合理论的Foster变换,提出一种高阶阻抗传递函数的降阶转换方法。在四分之一车辆悬架模型的基础上,利用改进的粒子群算法对系统的元件参数进行优化求解。仿真结果表明:应用高阶阻抗传递函数的车辆ISD悬架系统的隔振性能得到显著改善,其中,悬架动行程均方根值最多减小了20.63%,轮胎动载荷均方根值减小了11.22%。最后,根据无源网络综合的最简实现判据,将降阶转换后的双二次传递函数进行网络综合被动实现,得到了具体的机械网络结构与等效的电网络结构,并给出了车辆ISD悬架系统的结构实现方案,进一步拓展了车辆ISD悬架工程化应用的思路。
Abstract
In order to explore the performance improvement of a vehicle inerter-spring-damper(ISD) suspension by using the high order impedance transfer function, the application of bi-cubic impedance transfer function was discussed. Based on the structural characteristics of the vehicle ISD suspension employing mechatronic inerter, an approach of order reduction and transformation for the high order impedance transfer function was proposed by use of the Foster conversion in passive network synthesis. On the basis of a quarter car model, the parameters of the suspension were optimized using the improved particle swarm algorithm. The simulation results show that, the vibration isolation performance of the vehicle ISD suspension based on the high order impedance transfer function is superior to the passive vehicle suspension, the root-mean-square of the suspension working space is reduced by up to 20.63% and the root-mean-square of the dynamic tire load is reduced by 11.22%. According to the simplest implementation criterion of the passive network synthesis, the biquadratic impedance transfer function was realized by using a mechanical network and an electric network, and the structure of the vehicle ISD suspension was provided. The research expands the thinking to promote the application of the vehicle ISD suspension in mechanical engineering.
关键词
车辆 /
悬架 /
惯容器 /
高阶阻抗传递函数 /
网络综合
{{custom_keyword}} /
Key words
vehicle /
suspension /
inerter /
high-order impedance transfer function /
network synthesis
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Smith M C, Wang F C. Performance benefits in passive vehicle suspensions employing inerters[J]. Vehicle System Dynamics, 2004, 42(4): 235-257.
[2] 张孝良,何海,聂佳梅等. 天棚惯容控制半主动悬架的性能分析[J]. 江苏大学学报(自然科学版), 2018, 39(5): 497-502.
ZHANG Xiao-liang, HE Hai, NIE Jia-mei, et al. Performance analysis of semi-active suspension with skyhook-inertance control[J]. Journal of Jiangsu University (Natural Science Edition), 2018, 39(5): 497-502.
[3] 杜甫, 毛明, 陈轶杰,等. 基于动力学模型与参数优化的ISD悬架结构设计及性能分析[J]. 振动与冲击, 2014, 33(6): 59-65.
DU Fu, MAO Ming, CHEN Yi-jie, et al. Structure design and performance analysis of inerter-spring-damper suspension structure based on dynamic model and parameter optimization[J]. Journal of vibration and shock, 2014, 33(6): 59-65.
[4] Smith M C. Force-controlling mechanical device: UK PCT/GB02/03056[P]. 2003-01-16.
[5] Smith M C. Synthesis of mechanical networks: the inerter[J]. IEEE Transactions on Automatic Control, 2002, 47(10): 1648-1662.
[6] 罗胜钦, 刘芳, 韩志刚. 网络综合原理[M]. 上海:同济大学出版社, 2009.
LUO Sheng-qin, LIU Fang, HAN Zhi-gang. Network Synthesis Principle[M]. Shanghai: Tongji University Press, 2009.
[7] Wang K, Chen M Z Q, Hu Y L. Synthesis of biquadratic impedances with at most four passive elements[J]. Journal of the Franklin Institute, 2014, 351(3): 1251-1267.
[8] Jiang J Z, Smith M C. Series-Parallel Six-Element Synthesis of Biquadratic Impedances[J]. IEEE Transactions on Circuits & Systems I Regular Papers, 2012, 59(11): 2543-2554.
[9] Chen M Z Q, Hu Y L, Wang F C. Passive Mechanical Control with a Special Class of Positive Real Controllers: Application to Passive Vehicle Suspensions[J]. Journal of Dynamic Systems Measurement & Control, 2015, 137: 1-11.
[10] Zhang S Y, Jiang J Z, Wang H L, et al. Synthesis of essential‐regular bicubic impedances[J]. International Journal of Circuit Theory & Applications, 2017, 45: 1482-1496.
[11] Wang K, Chen M Z Q. Generalized Series–Parallel RLC Synthesis Without Minimization for Biquadratic Impedances[J]. IEEE Transactions on Circuits & Systems II Express Briefs, 2013, 59(11): 766-770.
[12] Papageorgiou C, Smith M C. Positive real synthesis using matrix inequalities for mechanical networks: application to vehicle suspension[J]. IEEE Transactions on Control Systems Technology, 2006, 14(3): 423-435.
[13] Wang F C, Liao M K, Liao B H, et al. The performance improvements of train suspension systems with mechanical networks employing inerters[J]. Vehicle System Dynamics, 2009, 47(7): 805-830.
[14] Wang F C, Chan H A. Vehicle suspensions with a mechatronic network strut[J]. Vehicle System Dynamics, 2011, 49(5): 811-830.
[15] Chen M Z Q, Smith M C. A Note on Tests for Positive-Real Functions[J]. IEEE Transactions on Automatic Control, 2009, 54(2): 390-393.
[16] Bott R, Duffin R J. Impedance synthesis without use of transformers[J]. Journal of Applied Physics, 1949, 20(8): 816-816.
[17] Brune O. Synthesis of a Finite Two‐terminal Network whose Driving-point Impedance is a Prescribed Function of Frequency[J]. Journal of Mathematics & Physics, 1931, 10(1-4): 30-36.
[18] Jiang J Z, Smith M C. Regular Positive-Real Functions and Five-Element Network Synthesis for Electrical and Mechanical Networks[J]. IEEE Transactions on Automatic Control, 2011, 56(6): 1275-1290.
[19] 杨晓峰, 沈钰杰, 陈龙,等. 基于动力吸振理论的车辆ISD悬架设计与性能分析[J]. 汽车工程, 2014, 36(10): 1262-1266.
YANG Xiao-feng, SHEN Yu-jie, CHEN Long, et al. Design and performances analysis of vehicle ISD suspension based on dynamic vibration absorber theory [J]. Automotive Engineering, 2014, 36(10): 1262-1266.
[20] 吴志成,陈思忠,杨林,等. 基于有理函数的路面不平度时域模型研究[J]. 北京理工大学学报,2009, 29(9): 795-798.
WU Zhi-cheng, CHEN Si-zhong, YANG Lin, et al. Model of road roughness in time domain based on rational function [J]. Transactions of Beijing institute of Technology, 2009, 29(9): 795-798.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}