为快速求解尾流引起的叶片气动力,提出了基于谐波平衡法的尾流激励的叶片气动力降阶模型方法。对该气动力降阶模型方法进一步的研究发现:小扰动情况下,尾流谐波引起的叶片气动力谐波振幅和尾流谐波振幅的比例系数只与尾流频率有关。基于这一发现,进一步提出了尾流激励下的叶片气动力快速分析方法。该方法首先得到若干谐波尾流引起的叶片气动力谐波振幅与谐波尾流振幅的比例系数,并拟合出这些比例系数与尾流谐波频率的关系曲线;对任意尾流通过该曲线插值出该尾流各谐波对应的比例系数,得到叶片气动力谐波振幅,再由气动力降阶模型求得尾流激励的叶片气动力。算例结果表明:提出的气动力快速分析方法可以快速准确的估计任意尾流激励下的叶片气动力,而无需对不同频率尾流反复的进行CFD气动力计算。
Abstract
To quickly solve blade aerodynamic force under wake excitation, the blade aerodynamic force reduced order model (ROM) method based on the harmonic balance method was proposed here.Through further studying this method, it was found that under small turbulence, proportional coefficients between aerodynamic force’s harmonic amplitudes and wake harmonic amplitudes are only related to wake frequencies.Based on this finding, the fast analysis method of blade aerodynamic force was proposed.Firstly, proportional coefficients between aerodynamic force’s harmonic amplitudes caused by wake harmonics and wake harmonic amplitudes were obtained, and then the relation curves between these proportional coefficients and wake harmonic frequencies were fitted.For any wake, proportional coefficients corresponding to its various harmonics were acquired through these curves interpolation, further blade aerodynamic force harmonic amplitudes were gained.Finally, the blade aerodynamic force ROM was used to solve blade aerodynamic force under wake excitation.The example calculation results showed that the proposed fast analysis method can be used to rapidly and accurately estimate blade aerodynamic force under any wake excitation without needing to do repeatedly CFD aerodynamic force computation for wakes of different frequencies.
关键词
尾流 /
降阶模型 /
影响系数法 /
气动力 /
叶片 /
谐波平衡法
{{custom_keyword}} /
Key words
wake /
reduced order model (ROM) /
influence coefficient method /
aerodynamic force /
blade /
harmonic balance method
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陈佐一.流体激振[M].北京:清华大学出版社,1988:24-27.
Chen Zuoyi. Oscillating Fluid Mechanics[M]. Beijing: Tsinghua University Press, 1988.
[2] 王梅.非定常流场分析结果想结构载荷压力场转化问题的解决[J].燃气涡轮试验与研究,2005,18(3):15-19.
Wang Mei. Solving the Problems of Transforming Unsteady Flow Analysis Results to Load Pressure Field[J]. Gas Turbine Experiment and Research, 2005, 18(3):15-19.
[3] 王梅,江和甫,吕文林.在尾流激振情况下叶片振动应力预估计技术[J].航空动力学报,2007,22(4):608-613.
Wang Mei, Jiang Hefu, Lv Wenlin. Method to Predict the Blade Vibration Stress Induced by Wake Flow[J]. Journal of Aerospace Power, 2007, 22(4):608-613.
[4] 杨慧,李振鹏.转静激励对转子叶片颤振特性的影响[J].北京航空航天大学学报,2016,42(2):258-264.
Yang Hui, Li Zhenpeng. Influence of Rotor-Stator Interaction on Rotor Blade Flutter Characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(2):258-264.
[5] Zhao Zhenhua, Lv Wenliang, Chen Wei, Wu Tieying. Vibration Numrical Analsys of Counter-Rotating Turbine with Wake-Flow Using Fluid-Structure Ineraction Method[J]. Transaction of Nanjing University of Aeronautics&Astronautics, 2011, 28(1):66-72.
[6] Kivanc Ekici, Robert E Kielb, Kenneth C Hall. The Effect of Aerodynamic Asymmetries on Turbomachinery Flutter[J]. Journal of Fluids and Structures, 2013, 36:1-17.
[7] Y L Lau, R C K Leung, R M C So. Vortex-Induced Vibration Effect on Fatigue Life Estimate of Turbine Blades[J]. Journal of Sound and Vibration, 2007, 307:698-719.
[8] 张伟伟,苏丹,张陈安,叶正寅,刘峰.一种基于CFD的叶轮机非定常气动力组合建模方法[J].推进技术,2012,33(1):37-41.
Zhang Weiwei, Su Dan, Zhang Chenan,Ye Zhengyin, Liu Feng. A CFD-Based Compositional Methodology of Unsteady Aerodynamic Modeling for Turbomachinery[J]. Journal of Propulsion Technology, 2012, 33(1):37-41.
[9] 陈刚,李跃明.非定常流场降阶模型及其应用研究进展与展望[J].力学进展, 2011, 41(6):686-701.
Chen Gang, Li Yueming. Advances and Prospects of the Reduced Order Model for Unsteady Flow and Its Application[J]. Advances in Mechanics, 2011, 41(6):686-701.
[10] G Dimitriadis. Continuation of Higher-Order Harmonic Balance Solutions for Nonlinear Aeroelastic Systems[J]. Journal of Aircraft, 2008, 45(2):523-537.
[11] Remi Bourguet, Marianna Braza, Alain Dervieux. Reduced-Order Modeling of Transonic Flows around an Airfoil Submitted to Small Deformations[J]. Journal of Computational Physics, 2011, 230:159-184.
[12] Maciej Balajewicz, Fred Nitzsche, Daniel Feszty. Application of Multi-Input Volterra Theory to Nonlinear Multi-Degree-of-Freedom Aerodynamic Systems[J]. AIAA Journal, 2010, 233:56-62.
[13] Y H Wang, J L Han. Approach to Identification of a Second-Order Volterra Kernel of Nonlinear Systems by Tchebyshev Polynomials Method[J]. Research Journal of Applied Sciences, Engineering and Technology, 2013, 5(20):4950-4955 .
[14] Walter A Silva. Reduced Order Models Based on Linear and Nonlinear Aerodynamic Impulse Responses[J]. AIAA Journal, 1999, 233:1-11.
[15] L He. Harmonic Solution of Unsteady Flow around Blades with Separation[J]. AIAA Journal, 2008, 46(6):1299-1307.
[16] Dan Su, Weiwei Zhang, Zhenyin Ye. A Reduced Order Model for Uncoupled and Coupled Cascade Flutter Analysis[J]. Journal of Fluids and Structures, 2016, 61:410-430.
[17] Meng-Sing Liou, Weigang Yao. Flutter Analysis for Turbomachinery Using Volterra Series [C]// Proceedings of ASME Turbo Expro. Düsseldorf, Germany, 2014: 1-13.
[18] Graham Ashcroft, Christian Frey, Hans-Peter Kersken. On the Development of a Harmonic Balance Method for Aeroelastic Analysis [C]// The 11th World Congress on Computational Mechanics (WCCM XI). Barcelona, Spain, 2014: 1-13.
[19] 章云,胡振邦,梅雪松. 高速转子分布式不平衡量无试重识别方法[J]. 振动与冲击,2017,36(4):28-31.
Zhuang Yun, Hu Zhenbang,Mei Xuesong. An identification method of distributed imbalance without trial weights for high speed rotors[J]. Journal of Vibration and Shock, 2017,36(4):28-31.
[20] 郑赟, 余永博. 轴向间距对转子叶片颤振特性的影响机理[J]. 北京航空航天大学学报,2018,44(4):709-716.
Zheng Yun, Yu Yangbo. Influence mechanism of axial spacing on rotor blade flutter characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018,44(4):709-716.
[21] K.Vogel, A.D.Naidu; M.Fischer. Comparison of the influence coefficient method and Travelling Wave Mode Approach for the Calculation of Aerodynamic Damping of Centrifugal Compressors and Axial Turbines[C]//Turbomachinery Technical Conference and Expositon. Charlotte, NC, USA, 2017:1-9.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}