针对一般层合板统计能量分析(SEA)参数获取困难问题,建立了一种基于谱元法(SFEM)的SEA参数计算方法。采用三节点二次谱单元在层合板厚度方向进行网格划分,通过刚度矩阵与质量矩阵建立波数的特征方程;根据模态相似原则,利用皮尔逊相关系数对各阶模态的波数进行分类,进而获得层合板的模态密度、辐射效率等SEA参数。对单层薄板和三明治夹芯板进行了数值模拟研究,计算结果与其他理论值或实验值进行对比,验证了该方法的有效性,并以五层碳-碳正交各向异性板为例,考察了经典层合板理论和一阶剪切理论的分析偏差。最后计算了汽车玻璃层合板的内损耗因子,验证了基于SFEM计算层合板内损耗因子的有效性。
Abstract
Aiming at the problem of difficult to acquire common laminated plates’ SEA parameters, an effective algorithm based on the spectral finite element method (SFEM) for SEA parameters computation was proposed.The 3-node quadratic spectral finite element was used to divide grids in thickness direction of a laminated plate, and the characteristic equation of wave number was established by using the plate’s stiffness and mass matrices.According to the modal similarity criterion, Pearson correlation coefficient was used to classify various modes’ wave numbers to gain the laminated plate’s SEA parameters, such as, modal densities and radiation efficiencies.Numerical simulation was performed for single-layer thin plates and sandwich ones.The computation results were compared with other theoretical values or test ones to verify the effectiveness of the proposed method.A five-layer C-C orthotropic laminated plate was taken as an example to investigate analysis deviations of the classical laminate plate theory and the first-order shear theory.Finally, the internal loss factor of automobile glass laminated plate was calculated to verify the effectiveness of calculating laminated plate’s internal loss factor based on SFEM.
关键词
谱元法 /
层合板 /
波数 /
模态密度 /
统计能量分析
{{custom_keyword}} /
Key words
spectral finite element method (SFEM) /
laminated plate /
wave number /
modal density /
statistical energy analysis (SEA)
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张婧雯, 孟光, 游进,等. 基于统计能量法的声场-结构耦合模型高频振动隔振分析[J]. 振动与冲击, 2009, 28(12):19-22.
ZHANG Jing-wen, MENG Guang, YOU Jin, et al. Analysis of high frequency vibration isolation of sound field and structural coupling model based on statistical energy method [J]. Journal of vibration and shock, 2009, 28(12):19-22.
[2] 姚德源,王其政. 统计能量分析原理及其应用[M]. 北京理工大学出版社, 1995.
YAO De-yuan, WANG Qi-zheng. Principle and application of statistical energy analysis [M]. Beijing institute of technology press, 1995.
[3] Renji K, Nair P S, Narayanan S. Modal density of composite honeycomb sandwich panels [J]. Journal of Sound & Vibration, 1996, 195(195):687-699.
[4] Zhou R, Crocker M J. Sound transmission loss of foam-filled honeycomb sandwich panels using statistical energy analysis and theoretical and measured dynamic properties[J]. Journal of Sound & Vibration, 2010, 329(6):673-686.
[5] Han J, Yu K, Li X, et al. Modal density of sandwich panels
based on an improved ordinary sandwich panel theory[J]. Composite Structures, 2015, 131:927-938.
[6] Stavsky Y. Bending and stretching of laminated aeolotropic plates[J]. Transactions of the American Society of Civil Engineers, 1961.
[7] Whitney J M. Shear deformation in heterogeneous anisotropic plates[J]. Journal of Applied Mechanics-transactions of the Asme, 1970, 37(2):30.
[8] Chronopoulos D, Ichchou M, Troclet B, et al. Computing the broadband vibroacoustic response of arbitrarily thick layered panels by a wave finite element approach[J]. Applied Acoustics, 2014, 77(77):89-98.
[9] Zak A, Krawczuk M, Ostachowicz W. Propagation of in-plane waves in an isotropic panel with a crack[J]. Finite Elements in Analysis & Design, 2006, 42(11):929-941.
[10] Peng H, Meng G, Li F. Modeling of wave propagation in plate structures using three-dimensional spectral element method for damage detection[J]. Journal of Sound & Vibration, 2009, 320(4):942-954.
[11] Kudela P, Krawczuk M, Ostachowicz W. Wave propagation modelling in 1D structures using spectral finite elements[J]. Journal of Sound & Vibration, 2007, 300(1):88-100.
[12] Datta S K, Shah A H, Karunasena W. Edge and layering effects in a multilayered composite plate[J]. Computers & Structures, 1990, 37(2):151,IN3-162,IN4.
[13] Shorter P J. Wave propagation and damping in linear viscoelastic laminates[J]. Journal of the Acoustical Society of America, 2004, 115(5):1917-1925.
[14] 徐超, 王腾. 基于时域谱单元的功能梯度材料结构波传播分析[J]. 振动与冲击, 2015(13):18-23.
XU chao, WANG Teng. Wave propagation analysis for functionally grades material structures using time domain spectral element method[J]. Journal of vibration and shock, 2015(13):18-23.
[15] 齐敏, 李大健, 郝重阳. 模式识别导论[M]. 清华大学出版社, 2010.
QI Ming, Li Da-jian, HAO Chong-ang. Introduction to pattern recognition [M]. Tsinghua university press, 2010.
[16] Crocker M J, Price A J. Sound transmission using statistical energy analysis[J]. Journal of Sound & Vibration, 1969, 9(3):469-486.
[17] 杨雨超. 复合板的统计能量建模分析及验证[D]. 哈尔滨工业大学, 2013.
YANG Yuchao. Analysis and verification of statistical energy modeling of composite panels [D]. Harbin Institute of Technology, 2013.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}