基于Euler -Bernoulli梁模型,考虑科氏力和离心力效应,由Hamilton原理建立加速旋转薄壁圆环的平面内线性运动方程。利用波动法对运动微分方程进行求解分析,计算出薄壁圆环在旋转状态下的固有频率,并与相关文献进行了比较,验证动力学方程的准确性。同时分析角加速度,角速度对薄壁圆环模态特性的影响。研究为加速旋转薄壁圆环提供了线性振动特性的波动计算方法,从波动的角度分析加速旋转薄壁圆环结构固有频率和模态特性,拓宽波动法动力学计算范畴。
Abstract
Using Hamilton’s principle, the in-plane linear partial differential dynamic equations of a thin ring with rotary acceleration were established on the basis of Euler-Bernoulli beam theory considering effects of Coriolis force and centrifugal one.The wave method was used to solve the differential equations, and natural frequencies of the ring under its rotating state were computed and compared with those published in literature to verify the correctness of these dynamic equations.Effects of rotating angular acceleration and angular velocity on mode characteristics of the thin ring were analyzed.The study results provided the wave method for calculating linear vibration characteristics of a thin ring with rotary acceleration, and widened the scope of dynamic calculation with the wave method.
关键词
加速旋转 /
薄壁圆环 /
模态特性 /
波动法
{{custom_keyword}} /
Key words
rotary acceleration /
thin ring /
mode characteristics /
wave method
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] RAO SS, Sundrarajan V. In-plane flexural vibrations of circular rings [J]. Journal of Applied Mechanics, 1969, 36 (3): 620-625.
[2] Kirkhope J. Simple frequency expression for the in-plane vibration of thick circular rings [J]. The Journal of the Acoustical Society of America, 1976, 59 (1):86-89.
[3] Evensen DA. Nonlinear flexural vibrations of thin circular rings [J]. American Society of Mechanical Engineering Journal of Applied Mechanics. 1966, 33 (33): 553-560.
[4] Natsiavas S. Dynamics and stability of non-linear free vibration of thin rotating rings [J]. International Journal of Non-linear Mechanics. 1994, 29 (1): 31-48
[5] HUANG SC, SOEDEL W. Effects of Coriolis acceleration on the free and forced in-plane vibrations of rotating Rings on elastic foundation [J], Journal of Sound and Vibration. 1987, 115 (2): 253-274.
[6] Eley R, Fox CHJ, Mc William S. Coriolis coupling effects on the vibration of rotating rings [J]. Journal of Sound and Vibration, 2000, 238 (3):459-480
[7] Kim W, CHUNG J. Free non-linear vibration of a rotating thin ring with the in-plane and out-of-plane motions [J], Journal of Sound and Vibration. 2002, 258 (1): 167-178.
[8] 王宇 ,于晓光 ,等.不同边界条件下高速旋转带篦齿薄壁短圆柱壳的行波共振特性研究[J]. 振动与冲击,2018,37(2):20-26.
(Wang Yu, Yu Xiaoguang, et.al. Travelling wave resonance characteristics of a high-speed rotating thin short cylindrical shell with sealing teeth in various boundary conditions[J].Journal of Vibration and Shock. 2018, 37(2): 20-26)
[9] 刘彦琦,褚福磊.几何参数对旋转薄壁圆柱壳振动特性的影响[J]. 振动与冲击,2012, 31(13): 22-25.
(Liu Yanqi,Chu Fulei. Effects of geometric parameters on vibration characteristics of rotating thin circular cylindrical shell[J]. Journal of Vibration and Shock. 2012, 31(13): 22-25.)
[10] 赵跃宇,康厚军,冯锐,等.曲线梁研究进展[J]. 力学进展,2006,36 (2):170-186.
(Zhao Yueyu, Kang Houjun, Feng Rui, et.al. Advances of research on curved beams [J]. Advances in Mechanics. 2006, 36(2): 170-186)
[11] Graff KF. Wave motion in elastic solids. London:Oxford University Press, 1975: 197-199
[12] Bickford WB, Reddy ES. On the in-plane vibrations of rotating rings [J], Journal of Sound and Vibration, 1985, 101 (1): 13-22.
[13] Blevins R. D. Formulas for Natural Frequency and Mode Shape [J], Journal of Acoustical Society of America, 1998, 67 (5): 1849
[14] Chouvion B, Popov AA, McWilliam S, et.al. Vibration modeling of complex waveguide structures [J], Computers and Structures, 2011, 89 (11): 1253-1263.
[15] Dishan Huang, Liang Tang, Rui Cao. Free vibration analysis of planar rotating rings by wave propagation [J], Journal of Sound and Vibration. 2013, 332 (20): 4979-4997.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}