[1] 王宏超,陈 进,董广明. 基于最小熵解卷积与稀疏分解的滚动轴承微弱故障特征提取[J]. 机械工程学报,2013, 49(1):88-94.
WANG Hong-chao, CHEN Jin, DONG Guang-ming. Fault diagnosis method for rolling bearing's weak fault based on minimum entropy deconvolution and sparse decomposition [J]. Journal of Mechanical Engineering ,2013, 49(1): 88-94.
[2] 唐贵基,王晓龙.最大相关峭度解卷积结合1.5维谱的滚动轴承早期故障特征提取方法[J].振动与冲击,2015, (12): 79-84.
TANG Gui-ji, WANG Xiao-long. Feature extraction for rolling bearing incipient fault based on maximum correlated kurtosis deconvolution and 1.5 dimension spectrum [J]. Journal of Vibration and Shock, 2015, 34(12): 79-84.
[3] 刘 韬,陈 进,董广明等. 基于频带熵的滚动轴承故障诊断研究[J]. 振动与冲击,2014, (1): 77-80.
LIU Tao, CHEN Jin, DONG Guang-ming. Rolling element bearing fault diagnosis based on frequency band entropy[J]. Journal of Vibration and Shock, 2014, 33(1): 77-80.
[4] 苏文胜,王奉涛,张志新等.EMD降噪和谱峭度法在滚动轴承早期故障诊断中的应用[J].振动与冲击,2010, 29(3): 18-21.
SU Wen-sheng, WANG Feng-tao, ZHANG Zhi-xin,et al. Application of EMD denoising and spectral kurtosis in early fault diagnosis of rolling element bearings[J], Journal of Vibration and Shock, 2010, 29(3): 18-21.
[5] 毕果. 基于循环平稳的滚动轴承及齿轮微弱故障特征提取应用研究[D]. 上海交通大学,2007.
Bi Guo. The research on early fault reature extraction of rolling bearings and gears based on cyclostationarity. Shanghai Jiao Tong University, 2007.
[6] Huang H, Ouyang H, Gao H, et al. A Feature Extraction Method for Vibration Signal of Bearing Incipient Degradation[J]. Measurement Science Review, 2016, 16(3):149-159.
[7] 唐先广,郭 瑜,丁彦春.基于独立分量分析与希尔伯特-黄变换的轴承故障特征提取[J].振动与冲击,2011, 30(10):45-49.
TANG Xian-guang, GUO Yu, DING Yan-chun. Rolling element bearing fault feature extraction based on HHT and independent compoment analysis[J]. Journal of Vibration and Shock, 2011, 30(10):45-49.
[8] Rubini R, Meneghetti U. Application of the Envelope and Wavelet Ttransform Analyses for the Diagnosis of Incipient Faults in Ball Bearings[J]. Mechanical Systems & Signal Processing, 2001, 15(2):287-302.
[9] Mcdonald G L, Zhao Q. Multipoint optimal minimum entropy deconvolution and convolution fix: application to vibration fault detection[J]. Mechanical Systems & Signal Processing, 2016, 82(1):461-477.
[10] Cabrelli C A. Minimum entropy deconvolution and simplicity: A noniterative algorithm[J]. Geophysics, 1985,50(3):394-413.
[11] Dragomiretskiy K, Zosso D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3):531-544.
[12] 刘长良,武英杰,甄成刚.基于变分模态分解和模糊C均值聚类的滚动轴承故障诊断[J].中国电机工程学报,2015,35(13):3358-3365.
LIU Chang-liang, WU Ying-jie, ZHEN Cheng-gang. Rolling bearing fault diagnosis based on variational mode decomposition and fuzzy c means clustering[J]. Proceedings of the CSEE, 2015,35(13):3358-3365.
[13] Dwyer R. Detection of non-Gaussian signals by frequency domain Kurtosis estimation[C] Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP. IEEE, 1983:607-610.