基于自适应MOMEDA与VMD的滚动轴承早期故障特征提取

刘岩,伍星,刘韬,陈庆

振动与冲击 ›› 2019, Vol. 38 ›› Issue (23) : 219-229.

PDF(1501 KB)
PDF(1501 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (23) : 219-229.
论文

基于自适应MOMEDA与VMD的滚动轴承早期故障特征提取

  • 刘岩,伍星,刘韬,陈庆
作者信息 +

Feature extraction for rolling bearing incipient faults based on adaptive MOMEDA and VMD

  • LIU Yan,WU Xing,LIU Tao,CHEN Qing
Author information +
文章历史 +

摘要

轴承故障衍生早期,由于故障尺寸较小且易受环境噪声和信号衰减的影响,因此故障冲击信号往往非常微弱。变分模态分解(Variational Mode Decomposition,VMD)已经在轴承的故障特征提取中有一定的应用,但对于背景噪声较强时的滚动轴承的微弱故障提取效果并不理想。针对这一问题,将改进多点优化最小熵解卷积(Multipoint Optimal Minimum Entropy Deconvolution Adjusted,MOMEDA)与VMD相结合,研究了滤波器长度对MOMEDA效果的影响,提出基于进退法确定最优滤波器长度的自适应MOMEDA方法。利用自适应MOMEDA对信号降噪并避免传统MED迭代以及滤波后可能出现的虚假峰值。将自适应MOMEDA降噪后的信号使用VMD进行分解,然后依据谱峭度大小进行重构,对重构之后的信号进行故障特征提取,取得了较好的效果。最后通过实验验证了方法的可行性及有效性。

Abstract

Due to bearing incipient fault size being smaller and susceptible to environmental noise and signal degradation, fault impact signals are often very weak.Variational mode decomposition (VMD) has a certain application in bearing fault feature extraction, but bearing weak fault extraction is not ideal under stronger background noise.Here, aiming at this problem, the multipoint optimal minimum entropy deconvolution adjusted (MOMEDA) and VMD were proposed to do bearing early fault diagnosis.Influences of filter length on MOMEDA effect were studied.An adaptive MOMEDA method based on the forward and backward one was proposed to determine the optimal filter length.The adaptive MOMEDA was used to de-noise signals and avoid false peal values after traditional MED iteration and filtering.The de-noised signals were decomposed with VMD to do signal reconstruction based on spectral kurtosis.Fault features were extracted from the reconstructed signals to gain the better effect.Finally, the feasibility and effectiveness of the proposed method were verified with tests.

关键词

多点优化最小熵解卷积 / 变分模态分解 / 谱峭度 / 滚动轴承早期故障 / 进退法

Key words

multipoint optimal minimum entropy deconvolution adjusted (MOMEDA) / variational mode decomposition (VMD) / spectral kurtosis / rolling bearing incipient fault / forward and backward method

引用本文

导出引用
刘岩,伍星,刘韬,陈庆. 基于自适应MOMEDA与VMD的滚动轴承早期故障特征提取[J]. 振动与冲击, 2019, 38(23): 219-229
LIU Yan,WU Xing,LIU Tao,CHEN Qing. Feature extraction for rolling bearing incipient faults based on adaptive MOMEDA and VMD[J]. Journal of Vibration and Shock, 2019, 38(23): 219-229

参考文献

[1] 王宏超,陈  进,董广明. 基于最小熵解卷积与稀疏分解的滚动轴承微弱故障特征提取[J]. 机械工程学报,2013, 49(1):88-94.
WANG Hong-chao, CHEN Jin, DONG Guang-ming. Fault diagnosis method for rolling bearing's weak fault based on minimum entropy deconvolution and sparse decomposition [J]. Journal of Mechanical Engineering ,2013, 49(1): 88-94.
[2] 唐贵基,王晓龙.最大相关峭度解卷积结合1.5维谱的滚动轴承早期故障特征提取方法[J].振动与冲击,2015, (12): 79-84.
TANG Gui-ji, WANG Xiao-long. Feature extraction for rolling bearing incipient fault based on maximum correlated kurtosis deconvolution and 1.5 dimension spectrum [J]. Journal of Vibration and Shock, 2015, 34(12): 79-84.
[3] 刘  韬,陈  进,董广明等. 基于频带熵的滚动轴承故障诊断研究[J]. 振动与冲击,2014, (1): 77-80.
LIU Tao, CHEN Jin, DONG Guang-ming. Rolling element bearing fault diagnosis based on frequency band entropy[J]. Journal of Vibration and Shock, 2014, 33(1): 77-80.
[4] 苏文胜,王奉涛,张志新等.EMD降噪和谱峭度法在滚动轴承早期故障诊断中的应用[J].振动与冲击,2010, 29(3): 18-21.
SU Wen-sheng, WANG Feng-tao, ZHANG Zhi-xin,et al. Application of EMD denoising and spectral kurtosis in early fault diagnosis of rolling element bearings[J], Journal of Vibration and Shock, 2010, 29(3): 18-21.
[5] 毕果. 基于循环平稳的滚动轴承及齿轮微弱故障特征提取应用研究[D]. 上海交通大学,2007.
Bi Guo. The research on early fault reature extraction of rolling bearings and gears based on cyclostationarity. Shanghai Jiao Tong University, 2007.
[6] Huang H, Ouyang H, Gao H, et al. A Feature Extraction Method for Vibration Signal of Bearing Incipient Degradation[J]. Measurement Science Review, 2016, 16(3):149-159.
[7] 唐先广,郭  瑜,丁彦春.基于独立分量分析与希尔伯特-黄变换的轴承故障特征提取[J].振动与冲击,2011, 30(10):45-49.
TANG Xian-guang, GUO Yu, DING Yan-chun. Rolling element bearing fault feature extraction based on HHT and independent compoment analysis[J]. Journal of Vibration and Shock, 2011, 30(10):45-49.
[8] Rubini R, Meneghetti U. Application of the Envelope and Wavelet Ttransform Analyses for the Diagnosis of Incipient Faults in Ball Bearings[J]. Mechanical Systems & Signal Processing, 2001, 15(2):287-302.
[9] Mcdonald G L, Zhao Q. Multipoint optimal minimum entropy deconvolution and convolution fix: application to vibration fault detection[J]. Mechanical Systems & Signal Processing, 2016, 82(1):461-477.
[10] Cabrelli C A. Minimum entropy deconvolution and simplicity: A noniterative algorithm[J]. Geophysics, 1985,50(3):394-413.
[11] Dragomiretskiy K, Zosso D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3):531-544.
[12] 刘长良,武英杰,甄成刚.基于变分模态分解和模糊C均值聚类的滚动轴承故障诊断[J].中国电机工程学报,2015,35(13):3358-3365.
LIU Chang-liang, WU Ying-jie, ZHEN Cheng-gang. Rolling bearing fault diagnosis based on variational mode decomposition and fuzzy c means clustering[J]. Proceedings of the CSEE, 2015,35(13):3358-3365.
[13] Dwyer R. Detection of non-Gaussian signals by frequency domain Kurtosis estimation[C] Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP. IEEE, 1983:607-610.
 

 

PDF(1501 KB)

656

Accesses

0

Citation

Detail

段落导航
相关文章

/