基于CEL方法的压差驱动式管道机器人动力特性分析

江旭东1,孙其海1,滕晓艳2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (23) : 259-264.

PDF(2332 KB)
PDF(2332 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (23) : 259-264.
论文

基于CEL方法的压差驱动式管道机器人动力特性分析

  • 江旭东1 ,孙其海1,滕晓艳2
作者信息 +

Dynamic characteristics analysis for an in-pipe robot driven by pressure difference based on CEL approach

  • JIANG Xudong1, SUN Qihai1, TENG Xiaoyan2
Author information +
文章历史 +

摘要

针对压差驱动式管道机器人多柔体系统与管内流体的流固耦合问题,基于耦合的欧拉-朗格朗日(CEL)方法建立了机器人系统流固耦合模型,获得了机器人在复杂管道内运行时的结构动力响应。对比分析了不同管道内径和机器人舱段长度下的密封皮碗应力场、管道与机器人间的摩擦力和流体对管道机器人的驱动压差。数值结果表明,管道机器人进入管道初期驱动压差出现峰值,随着机器人运动速度的波动和管道拓扑的改变,驱动压差再次出现峰值。管道机器人位于小曲率半径弯道时,密封皮碗经历强烈的局部化挤压作用形成峰值等效应力,但是,由于密封皮碗与弯道的间隙引起摩擦力降至谷值。此外,随着管道内径的减少,密封皮碗的等效应力、平均摩擦力以及平均驱动压差增大;舱段长度增加,密封皮碗的等效应力、平均摩擦力以及平均驱动压差随之增大。

Abstract

Aiming at the problem of fluid-structure interaction between flexible multi-body system of an in-pipe robot driven by pressure difference and pipe’s internal flowing fluid, the robot system’s fluid-structure interaction dynamic model was established based on the coupled Euler-Lagrange (CEL) approach to obtain structural dynamic responses of the robot operating in the complicated pipe.Stress field of sealing cup, friction between pipe and robot, and driving pressure difference exerted on robot by fluid under different pipe internal radius and robot segment length, respectively were analyzed contrastively.The numerical results indicated that peak driving pressure difference appears during robot initially entering pipe and reappears with fluctuation of robot motion velocity and change in pipeline topology; when robot is at pipe’s small curvature radius bend, sealing cup experiences strong localized squeeze to form peak equivalent stress, but friction drops to vale value due to clearance between sealing cup and bend; with decrease in pipe’s inner radius, equivalent stress of sealing cup, average friction and average driving pressure difference increase; with increase in robot segment length, equivalent stress of sealing cup, average friction and average driving pressure difference increase.

关键词

压差驱动式管道机器人 / CEL方法 / 动力特性 / 流固耦合 / 有限元法

Key words

in-pipe robot driven by pressure difference / coupled Euler-Lagrange (CEL) approach / dynamic characteristics / fluid-structure interaction / FEM

引用本文

导出引用
江旭东1,孙其海1,滕晓艳2. 基于CEL方法的压差驱动式管道机器人动力特性分析[J]. 振动与冲击, 2019, 38(23): 259-264
JIANG Xudong1, SUN Qihai1, TENG Xiaoyan2. Dynamic characteristics analysis for an in-pipe robot driven by pressure difference based on CEL approach[J]. Journal of Vibration and Shock, 2019, 38(23): 259-264

参考文献

[1] Lesani M, Rafeeyan M, A Sohankar. Dynamic analysis of small Pig through two and three dimensional liquid pipeline [J]. Journal of Applied Fluid Mechanics, 2012 , 5 (2): 75-83
[2] Liang Z, He HG, Cai WL. Speed simulation of bypass hole PIG with a brake unit in liquid pipe [J]. Journal of Natural Gas Science and Engineering, 2017, 42: 40-47
[3] Malihe Mirshamsi, Mansour Rafeeyan. Dynamic analysis and simulation of long pig in gas pipeline [J]. Journal of Natural Gas Science and Engineering, 2015, 23: 294-303
[4] Zhang H, Zhang S, Liu S, et al. Measurement and analysis of friction and dynamic characteristics of PIG’s sealing disc passing through girth weld in oil and gas pipeline [J]. Measurement, 2015 , 64: 112-122
[5] Zhang H, Zhang S, Liu S, et al. Collisional vibration of PIGs (pipeline inspection gauges) passing through girth welds in pipelines [J]. Journal of Natural Gas Science and Engineering, 2016, 37: 15-28
[6] Zhu X, Zhang S, Li X, et al. Numerical simulation of contact force on bi-directional pig in gas pipeline: at the early stage of pigging [J]. Journal of Natural Gas Science and Engineering, 2015 , 23: 127-138
[7] Zhu X, Wang D, Hoi Yeung, et al. Comparison of linear and nonlinear simulations of bidirectional pig contact forces in gas pipelines [J]. Journal of Applied Fluid Mechanics, 2015, 27: 151-157
[8] F Ducobu, E Rivière-Lorphèvre, E Filippi. Finite element modelling of 3D orthogonal cutting experimental tests with the Coupled Eulerian-Lagrangian (CEL) formulation [J]. Finite Elements in Analysis & Design, 2017, 134: 27-40
[9] F Ducobu, E Rivière-Lorphèvre, E Filippi. Application of the Coupled Eulerian-Lagrangian (CEL) method to the modeling of orthogonal cutting [J]. European Journal of Mechanics, 2016 , 59: 58-66
[10] 姜忠涛, 李烨, 庞学佳, 等. 近场水下爆炸气泡射流载荷冲击船体外板的动响应分析[J].振动与冲击, 2018, 37(09): 214-220
JIANG Zhongtao, LI Ye, PANG Xuejia, et al. Dynamic response of hull plates subjected to near field underwater explosion bubble jet load [J]. 2018, 37(09): 214-220
[11] 叶林征, 祝锡晶, 王建青, 等. 基于CEL不同角度超声空化微射流冲击的仿真分析[J].振动与冲击, 2016, 35(16): 130-134
YE Linzheng, ZHU Xijing, WANG Jianqing, et al. Simulation of ultrasonic cavitation micro-jet with different angles based on CEL [J]. Journal of Vibration and Shock, 2016, 35(16): 130-134
[12] 李刚, 唐霄汉, 艾森, 等. 大型整流罩地面分离仿真预示与试验研究[J]. 宇航学报, 2015, 36(07): 833-839
LI Gang, TANG Xiaohan, AI Sen, et al. Simulation and experimental research on ground separation of a large-scale payload fairing [J]. Journal of Astronautics, 2015, 36(07): 833-839
[13] 姚小虎, 黄愉太, 欧智成, 等. 基于CEL算法的水陆两栖飞机水上降落动力特性分析[J]. 华南理工大学学报(自然科学版), 2015, 43(06): 110-115
YAO Xiaohu, HUANG Yutai, OU Zhicheng, et al. CEL algorithm-based analysis of dynamic characteristics of amphibious aircraft landing on water [J]. Journal of South China University of Technology (Natural Science Edition), 2015, 43(06): 110-115
[14] 魏鹏, 史勇杰, 徐国华. 复杂旋翼流场的耦合欧拉-拉格朗日数值方法[J]. 航空学报, 2013, 34(7): 1538-1547
WEI Peng, SHI Yongjie, XU Guohua. Coupled Eulerian-Lagrangian method for complicated rotor flow field prediction [J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7): 1538-1547
[15] Y Shi, G Xu, P Wei. Rotor wake and flow analysis using a coupled Eulerian-Lagrangian method [J]. Engineering Applications of Computational Fluid Mechanics, 2016, 10(1): 386-404
[16] 马子远, 俞小莉, 黄钰期, 等. 基于CEL算法的发动机润滑液瞬态振荡过程可视化研究[J]. 振动与冲击, 2018, 37(01): 72-76
MA Ziyuan, YU Xiaoli, HUANG Yuqi, et al. CEL algorithm-based visualization simulation of the transient oscillation of engine lubricant [J]. Journal of Vibration and Shock, 2018, 37(01): 72-76
[17] Shyue Keh-ming. A fluid-mixture type algorithm for compressible multicomponent flow with Mie-Gruneisen equation of state [J]. Journal of computational Physics, 2001, 171(2): 678-707
[18] KS Al-Athel, MS Gadala. Eulerian volume of solid (VOS) approach in solid mechanics and metal forming [J]. Computer Methods in Applied Mechanics & Engineering, 2011, 200(25-28): 2145-2159
[19] Van-Tu Nguyen, Warn-Gyu Park. A volume-of-fluid (VOF) interface-sharpening method for two-phase incompressible flows [J]. Computers & Fluids, 2017, 52: 104-119

PDF(2332 KB)

356

Accesses

0

Citation

Detail

段落导航
相关文章

/