CAARC标准高层建筑模型风致效应及背风侧流场特性研究

董欣1,2,叶继红3,邹云峰4,左太辉4

振动与冲击 ›› 2019, Vol. 38 ›› Issue (24) : 122-130.

PDF(3457 KB)
PDF(3457 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (24) : 122-130.
论文

CAARC标准高层建筑模型风致效应及背风侧流场特性研究

  • 董欣1,2,叶继红3,邹云峰4,左太辉4
作者信息 +

Wind-induced effects and leeward flow patterns of a CAARC standard tall building model

  • DONG Xin1,2,YE Jihong3,ZOU Yunfeng4,ZUO Taihui4
Author information +
文章历史 +

摘要

通过风洞测压试验、PIV试验和动力响应计算,对比分析0°和90°风向下,CAARC模型围护结构风压、模型背风侧流场特性及主体结构风振响应。①对比了模型立面风压分布及整体风力,两种风向下,模型表面风压分布的较大差异存在于侧风面。相比于0°风向,90°风向下模型整体阻力和升力较小,但整体扭矩较大。②直观展现了模型背风侧的流场特性。两种风向下,模型后部水平面内均出现尾流涡对;竖直面内的显著旋涡仅出现在0°风向。相比而言,0°风向下,尾流涡对尺寸较大,逆向流速较高,周围流体横风向运动剧烈。③给出了模型顶部位移和加速度随折减风速变化的拟合方程,两种风向下,模型顶部顺风向响应与折减风速的2~2.6次幂成正比;横风向响应与折减风速的3~3.5次幂成正比。相比而言,90°风向下,模型顶部横风向位移和加速度随折减风速的增幅分别为0°风向下的2倍和2.6倍。

Abstract

Through wind tunnel test, PIV experiment, and dynamic response calculation, wind pressure distribution, surrounding flow field, and wind-induced responses of a CAARC model under wind directions of 0° and 90° were investigated.Firstly, the wind pressure distribution and the total forces were compared.Results indicate that major difference of wind pressure distributions between the two wind directions is on the side face.Smaller drag and lift force, along with larger torque, is obtained under wind direction of 90°.Secondly, the flow field behind the model was displayed.A vortex pair in the horizontal plane was observed under two wind directions.Recirculation zone in the vertical plane appears only at wind direction of 0°.The vortex size and its reverse flow velocity are larger at wind direction of 0°.In addition, the transverse motion of fluid around the vortex is more vigorous.Thirdly, the variation of top displacement and acceleration with reduced velocity was explored.The along-wind and across-wind responses vary with reduced velocity to a power of 2—2.6 and 3—3.5, respectively.For wind direction of 90°, the amplification of across-wind displacement and across-wind acceleration with reduced velocity are twice and 2.6 times those under wind direction of 0°.

关键词

矩形高层建筑标准模型(CAARC) / 风压分布 / 整体风力 / 粒子图像测速技术(PIV) / 旋涡 / 风振响应

Key words

commonwealth advisory aeronautical research council(CAARC) / wind pressure distribution / total force / particle image velocimetry(PIV) / vortex / wind-induced response

引用本文

导出引用
董欣1,2,叶继红3,邹云峰4,左太辉4. CAARC标准高层建筑模型风致效应及背风侧流场特性研究[J]. 振动与冲击, 2019, 38(24): 122-130
DONG Xin1,2,YE Jihong3,ZOU Yunfeng4,ZUO Taihui4. Wind-induced effects and leeward flow patterns of a CAARC standard tall building model[J]. Journal of Vibration and Shock, 2019, 38(24): 122-130

参考文献

[1]      Wardlaw R.L. and Moss G. F.. A standard tall building model for the comparison of simulated natural winds in wind tunnels. Commonwealth Advisory Aeronautical Research Council Report CC-662, Tech. 25, January 1970.

[2]      Ahmed Elshaer, Haitham Aboshosha , Girma Bitsuamlak, Ashraf El Damatty. Agerneh Dagnew. LES evaluation of wind-induced responses for an isolated and a surrounded tall building [J]. Engineering Structures, 2016, 115: 179-195.

[3]      黄鹏,顾明,全涌. 高层建筑标准模型风洞测压和测力试验研究[J]. 力学季刊,200829(4)627-633.Huang Peng, Gu Ming, Quan Yong. Wind tunnel test research on CAARC standard tall building model [J]. Chinese Quarterly Mechanics, 2008, 29(4): 627-633. (in Chinese)

[4]      Melbourne W. H.. Comparison of measurements on the CAARC standard tall building model in simulated model wind flows [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1980, 6: 73-88.

[5]      Tanaka H. and Lawen N. Test on the CAARC standard tall building model with a length scale of 1:1000 [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1986, 25: 15-29.

[6]      Alexandre Luis Braun and Armando Miguel Awruch. Aerodynamic and aeroelastic analyses on the CAARC standard tall building model using numerical simulation [J]. Computers and Structures, 2009, 87: 564-581.

[7]      Goliger A. M. and Milford R. V. Sensitivity of the CAARC standard building model to geometric scale and turbulence [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1988, 31: 105-123.

[8]      Thepmongkorn S., Kwok K. C. S., Lakshmanan N.. A two-degree-of-freedom base hinged aeroelastic (BHA) model for response predictions [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 83: 171-181.

[9]      Shengdong Huang, Q. S. Li, Shengli Xu. Numerical evaluation of wind effects on a tall steel building by CFD [J]. Journal of Constructional Steel Research, 2007, 63: 612-627.

[10]  Yue Zhang, Wagdi G. Habashi, Rooh A. Khurraam. Predicting wind-induced vibrations of high-rise buildings using unsteady CFD and modal analysis [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 136: 165-179.

[11]  Dahai Yu, Ahsan Kareem. Parametric study of flow around rectangular prisms using LES [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 77&78: 653-662.

[12]  J. A. Amin, A. K. Ahuja. Characteristics of wind forces and responses of rectangular tall building [J]. International Journal of Advances Structural Engineering, 2014, 6(3): 1-14.

[13]  Yong Chul Kim and Jun Kanda. Wind pressures on tapered and set-back tall buildings [J]. Journal of Fluids and Structures, 2013, 39: 306-321.

[14]  Ning Lin, Chris Letchford, Yukio Tamura, Bo Liang, Osamu Nakamura. Characteristics of wind forces acting on tall buildings [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2005, 93: 217-242.

[15]  Hee Chang Lim, T. G. Thomas, Ian P. Castro. Flow around a cube in a turbulent boundary layer: LES and experiment [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2009, 97: 96-109.

[16]  Hiromasa Kawai, Yasuo Okuda, Masamiki Ohashi. Near wake structure behind a 3D square prism with the aspect ratio of 2.7 in shallow boundary layer flow [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 104-106: 196-202.

[17]  Sushanta Dutta, P. K. Panigrahi, K. Muralidhar. Experimental investigation of flow past a square cylinder at an angle of incidence [J]. Journal of Engineering Mechanics, 2008, 134(9): 788-803.

[18]  Dantec Dynamics. DynamicStudio User’s Guide [M]. Dantec Dynamics A/S, Skovlunde, Denmark.

[19]  Vedat Oruc, Huseyin Akilli, Besir Sahin. PIV measurements on the passive control of flow past a circular cylinder [J]. Experiemental Thermal and Fluid Science, 2016, 70: 283-291.


PDF(3457 KB)

Accesses

Citation

Detail

段落导航
相关文章

/